Source-Based Minimum Cost Multicasting: Intermediate-Node Selection with Potentially Low Cost

  • Gunu Jho
  • Moonseong Kim
  • Hyunseung Choo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3746)


In this paper, we propose a novel heuristic algorithm for constructing a minimum cost multicast tree. Our work is based on a directed asymmetric network and shows an improvement in terms of network cost for general random topologies close to real networks. It is compared to the most effective scheme proposed earlier by Takahashi and Matsuyama (TM) [18]. We have experimented comprehensive computer simulations and the performance enhancement is up to about 4.7% over TM. The time complexity of ours is O(kn 2) for an n-node network with k members in the multicast group which is comparable to those of previous works [12,18].


Source Node Destination Node Steiner Tree Multicast Tree Multicast Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, F., Varma, A.: Distributed Algorithms for Multicast Path Setup in Data Networks. IEEE/ACM Transactions on Networking 4(2), 181–191 (1996)CrossRefGoogle Scholar
  2. 2.
    Bauer, F., Varma, A.: ARIES: A rearrangeable inexpensive edge-based on-line Steiner Algorithm. IEEE Journal on Selected Areas in Communications, vol 15(3), 382–397 (1997)CrossRefGoogle Scholar
  3. 3.
    Bertsckas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  4. 4.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Doar, M., Leslie, I.: How bad is naive multicast routing. In: Proceedings of the IEEE INFOCOM, pp. 82–89 (1993)Google Scholar
  6. 6.
    Du, D.Z., Lu, B., Ngo, H., Pardalos, P.M.: Steiner Tree Problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of optimization, vol. 5, pp. 227–290. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Hwang, F.K., Richards, D.: Steiner Tree Problems. Networks 22, 55–89 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kadaba, B.K., Jaffe, J.M.: Routing to Multiple Destinations in Computer Networks. IEEE Transactions on Communications, COM-31 31(3), 343–351 (1983)zbMATHGoogle Scholar
  10. 10.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thather, J.W. (eds.) Complexity of computer computations, pp. 85–104. Newyork Plenum Press (1972)Google Scholar
  11. 11.
    Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast Routing for Multimedia Communications. IEEE/ACM Transactions on Networking 1(3), 286–292 (1993)CrossRefGoogle Scholar
  12. 12.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell System Tech.J. 36, 1389–1401 (1957)Google Scholar
  14. 14.
    Ramanathan, S.: Multicast Tree Generation in Networks with Asymmetric Links. IEEE/ACM Transactions on Networking 4(4), 558–568 (1996)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rodionov, A.S., Choo, H.: On generating random network structures: Trees. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2658, pp. 879–887. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Rodionov, A.S., Choo, H.: On generating random network structures: Connected Graphs. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 483–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Rayward-Smith, V.J.: A Clare, On finding Steiner vertices. Networks 16(3), 283–294 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Takahashi, H., Matsuyama, A.: An Approximate Solution for the Steiner Problem in Graphs. Mathematica Japonica 24(6), 573–577 (1980)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Wang, B., Hou, J.C.: Multicast Routing and Its QoS Extension: Problems, Algorithms, and Protocols. IEEE Network 14(1), 22–36 (2000)CrossRefGoogle Scholar
  20. 20.
    Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6(9), 1617–1622 (1988)CrossRefGoogle Scholar
  21. 21.
    Winter, P.: Steiner Problem in Networks: A Survey. Networks 17, 129–167 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gunu Jho
    • 1
  • Moonseong Kim
    • 1
  • Hyunseung Choo
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations