A Real Coded Genetic Algorithm for Data Partitioning and Scheduling in Networks with Arbitrary Processor Release Time

  • S. Suresh
  • V. Mani
  • S. N. Omkar
  • H. J. Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3740)

Abstract

The problem of scheduling divisible loads in distributed computing systems, in presence of processor release time is considered. The objective is to find the optimal sequence of load distribution and the optimal load fractions assigned to each processor in the system such that the processing time of the entire processing load is a minimum. This is a difficult combinatorial optimization problem and hence genetic algorithms approach is presented for its solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, Y.C., Robertazzi, T.G.: Distributed Computation with Communication Delay. IEEE Trans. Aerospace and Electronic Systems 24(6), 700–712 (1988)CrossRefGoogle Scholar
  2. 2.
    Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads in Parallel and Distributed Systems. IEEE CS Press, Los Alamitos (1996)Google Scholar
  3. 3.
    Special Issue on: Divisible Load Scheduling., Cluster Computing 6 (2003)Google Scholar
  4. 4.
  5. 5.
    Drozdowski, M., Wolniewicz, M.: On the Complexity of Divisible Job Scheduling with Limited Memory Buffers, Technical Report: R-001/2001. Institute of Computing Science, Poznan University of Technology (2001)Google Scholar
  6. 6.
    Beaumont, O., Legrand, A., Marchal, L., Robert, Y.: Independent and Divisible Task Scheduling on Heterogeneous Star-Shaped Platforms with Limited Memory, Research Report: 2004-22. LIP, ENS, Lyon, France (2004)Google Scholar
  7. 7.
    Beaumont, O., Legrand, A., Robert, Y.: Optimal Algorithms for Scheduling Divisible Work Loads on Heterogeneous Systems. In: Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS 2003). IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  8. 8.
    Banini, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.: Scheduling Strategies for Master-Slave Tasking on Heterogeneous Processor Platforms. IEEE Trans. on Parallel and Distributed Systems 15(4), 319–330 (2004)CrossRefGoogle Scholar
  9. 9.
    Veeravalli, B., Li, X., Ko, C.C.: On the Influence of Start-up Costs in Scheduling Divisible Loads on Bus Networks. IEEE Trans. on Parallel and Distributed Systems 11(12), 1288–1305 (2000)CrossRefGoogle Scholar
  10. 10.
    Suresh, S., Mani, V., Omkar, S.N.: The Effect of Start-up Delays in Scheduling Divisible Loads on Bus Networks: An Alternate Approach. Computers and Mathematics with Applications 40, 1545–1557 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Drozdowski, M., Wolniewicz, P.: Multi-Installment Divisible Job Processing with Communication Start-up Cost. Foundations of Computing and Decision Sciences 27(1), 43–57 (2002)Google Scholar
  12. 12.
    Bharadwaj, V., Li, H.F., Radhakrishnan, T.: Scheduling Divisible Loads in Bus Network with Arbitary Release Time. Computers and Mathematics with Applications 32(7), 57–77 (1996)MATHCrossRefGoogle Scholar
  13. 13.
    Bharadwaj, V., Min, W.H.: Scheduling Divisible Loads on Heterogeneous Linear Daisy Chain Networks with Arbitrary Processor Release Times. IEEE Trans. on Parallel and Distributed Systems 15(3), 273–288 (2004)CrossRefGoogle Scholar
  14. 14.
    Holland, H.J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  15. 15.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)MATHGoogle Scholar
  16. 16.
    David, L.: Handbook of Genetic Algorithms. Van Nostrand Reingold, New York (1991)Google Scholar
  17. 17.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. AI Series. Springer, New York (1994)MATHGoogle Scholar
  18. 18.
    Herrera, F., Lozano, M., Verdegay, J.L.: Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis. Artificial Intelligence Review 12(4), 265–319 (1998)MATHCrossRefGoogle Scholar
  19. 19.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)MATHGoogle Scholar
  20. 20.
    Herrera, F., Lozano, M., Sanchez, A.M.: Hybrid Crossover Operators for Real-Coded Genetic Algorithms: An Experimental Study. Soft Computing - A Fusion of Foundations, Methodologies and Applications (2002)Google Scholar
  21. 21.
    Herrera, F., Lozano, M., Sánchez, A.M.: A Taxonomy for the Crossover Operator for Real-Coded Genetic Algorithms: An Experimental Study. International Journal of Intelligent Systems 18, 309–338 (2003)MATHCrossRefGoogle Scholar
  22. 22.
    Houck, C.R., Joines, J.A., Kay, M.G.: A Genetic Algorithm for Function Optimization: A Matlab Implementation. ACM Transactions on Mathematical Software 22, 1–14 (1996)CrossRefGoogle Scholar
  23. 23.
    Mani, V., Suresh, S., Kim, H.J.: Real-Coded Genetic Algorithms for Optimal Static Load Balancing in Distributed Computing System with Communication Delays. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 269–279. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Herrera, F., Lozano, M.: Gradual Distributed Real-Coded Genetic Algorithms. IEEE Transactions on Evolutionary Computation 4(1), 43–63 (2000)CrossRefGoogle Scholar
  25. 25.
    Hong, T.P., Wang, H.S.: Automatically Adjusting Crossover Ratios of Multiple Crossover Operators. Journal of Information Science and Engineering 14(2), 369–390 (1998)Google Scholar
  26. 26.
    Hong, T.P., Wang, H.S., Lin, W.Y., Lee, W.Y.: Evolution of Appropriate Crossover and Mutation Operators in a Genetic Process. Applied Intelligence 16, 7–17 (2002)MATHCrossRefGoogle Scholar
  27. 27.
    Yoon, H.S., Moon, B.R.: An Empirical Study on the Synergy of Multiple Crossover Operators. IEEE Transactions on Evolutionary Computation 6(2), 212–223 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Suresh
    • 1
  • V. Mani
    • 1
  • S. N. Omkar
    • 1
  • H. J. Kim
    • 2
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Control and Instrumentation EngineeringKangwon National UniversityChunchonKorea

Personalised recommendations