Advertisement

Computer Vision Algorithms for Retinal Image Analysis: Current Results and Future Directions

  • Charles V. Stewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3765)

Abstract

Automated image analysis tools have the potential to play an important role in assisting in the diagnosis and treatment of retinal diseases. Problems that must be addressed in developing these tools include extraction of vascular and non-vascular features, segmentation of pathologies, unimodal and multimodal image registration, mosaic construction, and real-time systems. Research at Rensselaer Polytechnic Institute since the late 1990’s has focused on several of these problems. Most significantly, we have developed a series of registration and mosaic formation algorithms which have been validated on thousands of retinal images and have been extended beyond the retina application. While the core fundus image registration problem is essentially solved, important problems remain in many aspects of retinal image analysis.

Keywords

Optical Coherence Tomography Diabetic Retinopathy Retinal Image Iterative Close Point Fundus Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height-ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging. 21, 61–75 (2002)CrossRefGoogle Scholar
  2. 2.
    Barrett, S.F., Wright, C.H.G., Jerath, M.R.: Computer-aided retinal photocoagulation system. J. Biomed. Optics 1, 83–91 (1996)CrossRefGoogle Scholar
  3. 3.
    Barrett, S.F., Wright, C.H.G., Zwick, H., Wilcox, M., Rockwell, B.A., Naess, E.: Efficiently tracking a moving object in two-dimensional image space. J. Electronic Imaging 10(3), 785–793 (2001)CrossRefGoogle Scholar
  4. 4.
    Berger, J.W., Leventon, M.E., Hata, N., Wells, W., Kikinis, R.: Design considerations for a computer-vision-enabled ophthalmic augmented reality environment. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 399–408. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Besl, P., McKay, N.: A method for registration of 3-d shapes. IEEE T. Pattern Anal. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  6. 6.
    Brandon, L., Hoover, A.: Drusen detection in a retinal image using multi-level analysis. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 618–625. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Can, A., Shen, H., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Rapid automated tracing and feature extraction from live high-resolution retinal fundus images using direct exploratory algorithms. IEEE Trans. on Inf. Tech. in Biomedicine 3(2), 125–138 (1999)CrossRefGoogle Scholar
  8. 8.
    Can, A., Stewart, C., Roysam, B.: Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina. In: Proc. CVPR, pp. 286–292 (1999)Google Scholar
  9. 9.
    Can, A., Stewart, C., Roysam, B., Tanenbaum, H.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE T. Pattern Anal. 24(3), 347–364 (2002)CrossRefGoogle Scholar
  10. 10.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging. 8(3), 263–269 (1989)CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. IVC 10(3), 145–155 (1992)Google Scholar
  12. 12.
    Corona, E., Mitra, S., Wilson, M., Krile, T., Kwon, Y.H., Soliz, P.: Digital stereo image analyzer for generating automated 3-d measures of optic disc deformation in glaucoma. IEEE Trans. Med. Imaging. 21(10), 1244–1253 (2002)CrossRefGoogle Scholar
  13. 13.
    Fernández, D.C.: Delineating fluid-filled region boundaries in optical coherence tomography images of the retina. IEEE Trans. Med. Imaging. 24(8), 929–945 (2005)CrossRefGoogle Scholar
  14. 14.
    Foracchia, M., Grisan, E., Ruggeri, A.: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans. Med. Imaging. 23(10), 1189–1195 (2004)CrossRefGoogle Scholar
  15. 15.
    Frame, A., Undrill, P., Cree, M., Olson, J., McHardy, K., Sharp, P., Forrester, J.: A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comp. Bio. and Med., 225–238 (MAY 1998)Google Scholar
  16. 16.
    Frangi, A., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Fritzsche, K., Can, A., Shen, H., Tsai, C., Turner, J., Tanenbuam, H., Stewart, C., Roysam, B.: Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images. In: Suri, J.S., Laxminarayan, S. (eds.) State-of-The-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, pp. 225–298. Academic Press, London (2003)Google Scholar
  18. 18.
    Fritzsche, K.H.: Computer Vision Algorithms for Retinal Vessel Detection and Width Change Detection. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York (December 2004)Google Scholar
  19. 19.
    Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  20. 20.
    Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging. 22(8), 951–958 (2003), http://www.parl.clemson.edu/stare/nerve/ CrossRefGoogle Scholar
  21. 21.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging. 19(3), 203–210 (2000)CrossRefGoogle Scholar
  22. 22.
    Jomier, J., Wallace, D.K., Aylward, S.R.: Quantification of retinopathy of prematurity via vessel segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 620–626. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Koozekanani, D., Boyer, K., Roberts, C.: Retinal thickness measurements from optical coherence tomography using a markov boundary model. IEEE Trans. Med. Imaging. 20, 900–916 (2001)CrossRefGoogle Scholar
  24. 24.
    Li, H., Chutatape, O.: A model-based approach for automated feature extraction in fundus images. In: Proc. ICCV, pp. 394–399 (2003)Google Scholar
  25. 25.
    Lin, G., Stewart, C.V., Roysam, B., Fritzsche, K., Yang, G.: Predictive scheduling algorithms for real-time feature extraction and spatial referencing: Application to retinal image sequences. IEEE Trans. on Biomed. Eng. 51, 115–124 (2004)CrossRefGoogle Scholar
  26. 26.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  27. 27.
    Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher, E.: Optic nerve head segmentation. IEEE Trans. Med. Imaging. 23(2), 256–264 (2004)CrossRefGoogle Scholar
  28. 28.
    Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Kennedy, R.: Measurement of retinal vessel widths from fundus images based on 2-D modeling. IEEE Trans. Med. Imaging. 23(10), 1196–1204 (2004)CrossRefGoogle Scholar
  29. 29.
    Matsopoulos, G.K., Mouravliansky, N.A., Delibasis, K.K., Nikita, K.S.: Automatic retinal image registration scheme using global optimization techniques. IEEE Trans. on Inf. Tech. in Biomedicine 3(1), 47–60 (1999)CrossRefGoogle Scholar
  30. 30.
    Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M., Abramoff, M.: Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imaging. 24(5), 584–592 (2005)CrossRefGoogle Scholar
  31. 31.
    Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Comparative exudate classification using support vector machines and neural networks. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 413–420. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Pinz, A., Bernogger, S., Datlinger, P., Kruger, A.: Mapping the human retina. IEEE Trans. Med. Imaging. 17(4), 606–620 (1998)CrossRefGoogle Scholar
  33. 33.
    Rapantzikos, K., Zervakis, M., Balas, K.: Detection and segmentation of drusen deposits on human retina: Potential in the diagnosis of age-related macular degeneration. Med. Image Anal. 7(1), 95–108 (2003)CrossRefGoogle Scholar
  34. 34.
    Ritter, N., Owens, R., Cooper, J., Eikelboom, R., van Saarloos, P.: Registration of stereo and temporal images of the retina. IEEE Trans. Med. Imaging. 18(5), 404–418 (1999)CrossRefGoogle Scholar
  35. 35.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. Third Int. Conf. on 3DIM, pp. 224–231 (2001)Google Scholar
  36. 36.
    Sawhney, H., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 103–119. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  37. 37.
    Sbeh, Z.B., Cohen, L.D., Mimoun, G., Coscas, G.: A new approach for geodesic reconstruction in mathematical morphology and application to image segmentation and tracking in ophtalmology. IEEE Trans. Med. Imaging. 20(12), 1321–1333 (2001)CrossRefGoogle Scholar
  38. 38.
    Schmidt-Erfurth, U., et al.: Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch. Ophth. 117(9), 1177–1187 (1999)Google Scholar
  39. 39.
    Shen, H., Stewart, C., Roysam, B., Lin, G., Tanenbaum, H.: Frame-rate spatial referencing based on invariant indexing and alignment with application to laser retinal surgery. IEEE T. Pattern Anal. 25(3), 379–384 (2003)CrossRefGoogle Scholar
  40. 40.
    Shoemaker, J.A.: Vision problems in the U.S. Technical report, U.S. National Institute of Health (2002)Google Scholar
  41. 41.
    Sofka, M., Stewart, C.V.: Retinal vessel extraction using multiscale matched filters, confidence and edge measures. Technical Report 05-20, Department of Computer Science, Rensselaer Polytechnic Institute (2005)Google Scholar
  42. 42.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging. 23(4), 501–509 (2004)CrossRefGoogle Scholar
  43. 43.
    Stewart, C., Tsai, C.-L., Roysam, B.: The dual-bootstrap iterative closest point algorithm with application to retinal image registration. IEEE Trans. Med. Imaging. 22(11), 1379–1394 (2003)CrossRefGoogle Scholar
  44. 44.
    The Eye Diseases Prevalence Research Group. Prevalence of age-related macular degeneration in the united states 122(4), 564–572 (2004)Google Scholar
  45. 45.
    The Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the united states. Arch. Ophth. 122(4), 552–563 (2004)Google Scholar
  46. 46.
    The Eye Diseases Prevalence Research Group. Prevalence of open-angle glaucoma among adults in the united states. Arch. Ophth. 122(4), 532–538 (2004)Google Scholar
  47. 47.
    Tsai, C.-L., Majerovics, A., Stewart, C.V., Roysam, B.: Disease-oriented evaluation of dual-bootstrap retinal image registration. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 754–761. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  48. 48.
    Tsai, C.-L., Stewart, C., Roysam, B., Tanenbaum, H.: Repeatable vascular landmark extraction from retinal fundus images using local vascular traces. In: IEEE Trans. on Inf. Tech. in Biomedicine (2003) (to appear)Google Scholar
  49. 49.
    Tyrrell, J.A., LaPre, J.M., Carothers, C.D., Roysam, B., Stewart, C.V.: Efficient migration of complex off-line computer vision software to real-time system implementation on generic computer hardware. IEEE Trans. on Inf. Tech. in Biomedicine 8(2), 142–153 (2004)CrossRefGoogle Scholar
  50. 50.
    Walter, T., Klein, J.-C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy - detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging. 21(10) (October 2002)Google Scholar
  51. 51.
    Yang, G., Stewart, C.V.: Covariance-driven mosaic formation from sparsely-overlapping image sets with application to retinal image mosaicing. In: Proc. CVPR, pp. 804–810 (2004)Google Scholar
  52. 52.
    Yang, G., Stewart, C.V., Sofka, M., Tsai, C.-L.: The Generalized Dual-Bootstrap ICP algorithm with application to registering challenging image pairs. Technical Report 05-19, Department of Computer Science, Rensselaer Polytechnic Institute (2005)Google Scholar
  53. 53.
    Zana, F., Klein, J.C.: A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Trans. Med. Imaging. 18(5), 419–428 (1999)CrossRefGoogle Scholar
  54. 54.
    Zana, F., Klein, J.-C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)zbMATHCrossRefGoogle Scholar
  55. 55.
    Zhang, X., Chutatape, A.: Top-down and bottom-up strategies in lesion detection of background diabetic retinopathy. In: Proc. CVPR, pp. 422–428 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Charles V. Stewart
    • 1
  1. 1.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations