Advertisement

Efficient Symbolic Signatures for Classifying Craniosynostosis Skull Deformities

  • H. Jill Lin
  • Salvador Ruiz-Correa
  • Raymond W. Sze
  • Michael L. Cunningham
  • Matthew L. Speltz
  • Anne V. Hing
  • Linda G. Shapiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3765)

Abstract

Craniosynostosis is a serious and common pediatric disease caused by the premature fusion of the sutures of the skull. Early fusion results in severe deformities in skull shape due to the restriction of bone growth perpendicular to the fused suture and compensatory growth in unfused skull plates. Calvarial (skull) abnormalities are frequently associated with severe impaired central nervous system functions due to brain abnormalities, increased intra-cranial pressure and abnormal build-up of cerebrospinal fluid. In this work, we develop a novel approach to efficiently classify skull deformities caused by metopic and sagittal synostoses using our newly introduced symbolic shape descriptors. We demonstrate the efficacy of our methodology in a series of large-scale classification experiments that compare the performance of our symbolic-signature-based approach to those of traditional numeric descriptors that are frequently used in clinical research. We also demonstrate an application of our symbolic descriptors in shape-based retrieval of skull morphologies.

Keywords

Probabilistic Latent Semantic Analysis Symbolic Signature Skull Shape Cranial Image Sagittal Synostosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist, Soc. B 39 (1977)Google Scholar
  2. 2.
    Dryden, I., Mardia, K.V.: Statistical Shape Analysis. John Wiley and Sons, New York (1998)zbMATHGoogle Scholar
  3. 3.
    Efron, B.: The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics (1982)Google Scholar
  4. 4.
    Fata, J.J., Turner, M.S.: The reversal exchange technique of total calvarial reconstruction for sagittal synostosis. Plast. Reconst. Surg. 107, 1637–1646 (2001)CrossRefGoogle Scholar
  5. 5.
    Guimaras-Ferreira, J., Gewalli, F., David, L., Olsson, R., Freide, H., Lauritzen, C.G.K.: Spring-mediated cranioplasty compared with the modified pi-plasty for sagittal synostosis. Scand. J. Plast. Surg. Hand Surg. 37, 209–215 (2003)Google Scholar
  6. 6.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley, Reading (1992)Google Scholar
  7. 7.
    Hofmann, T.: Unsupervised learning by Probabilistic Latent Semantic Analysis. Machine Learning 42, 177–196 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Lajeunie, E., Le Merrer, M., Marchac, C., Renier, D.: Genetic study of scaphocepaly. Am. J. Med. Gene. 62, 282–285 (1996)CrossRefGoogle Scholar
  9. 9.
    Lale, S.R., Richtsmeier, J.T.: An invariant approach to statistical analysis of shape. Chapman and Hall/CRC (2001)Google Scholar
  10. 10.
    Lin, H.J., Ruiz-Correa, S., Shapiro, L.G., Hing, A.V., Cunningham, M.L., Speltz, M.L., Sze, R.W.: Symbolic shape descriptors for classifying craniosynostosis deformations from skull imaging. In: Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (2005) (in press)Google Scholar
  11. 11.
    Lynch, M., Walsh, B.: genetic and analysis of quantitative trait. Sinauer Associates (1998)Google Scholar
  12. 12.
    Panchal, J., Marsh, J.L., Park, T.S., Hauffman, B., Pilgram, T., Huang, S.H.: Sagittal craniosynostosis outcome assessment for two methods of timing and interventions. Plast. Reconstr. Surg. 103, 1574–1579 (1999)CrossRefGoogle Scholar
  13. 13.
    Rao, C.: Geometry of circular vectors and pattern recognition of shape of a boundary. Proc. Nat. Acad. Aci. 95, 12783 (2002)CrossRefGoogle Scholar
  14. 14.
    Ruiz-Correa, S., Shapiro, L.G., Meilă, M.: A new paradigm for recognizing 3-D object shapes from range data. IEEE International Conference on Computer Vision 2, 1126–1133 (2003)CrossRefGoogle Scholar
  15. 15.
    Ruiz-Correa, S., Sze, R.W., Lin, H.J., Shapiro, L.G., Speltz, M.L., Cunningham, M.L.: Classifying craniosynostosis deformations by skull shape imaging. In: Proceedings of the IEEE Conference on Computer-Based Medical Systems (2005) (in press)Google Scholar
  16. 16.
    Ruiz-Correa, S., Sze, R.W., Starr, J.R., Hing, A.V., Lin, H.J., Cunningham, M.L.: A Fourier-based approach for quantifying sagittal synostosis head shape. American Cleft Palate-Craniofacial Association Meeting (2005)Google Scholar
  17. 17.
    Ruiz-Correa, S., Sze, R.W., Starr, J.R., Lin, H.J., Speltz, M.L., Cunningham, M.L., Hing, A.V.: New scaphocephalyseverity indices of sagittal craniosynostosis: A comparative study with cranial index quantifications. Submitted to the American Cleft Palate-Craniofacial Association Journal (2005)Google Scholar
  18. 18.
    Scholköpf, B., Smola, A.J.: Learning with Kernels. Cambridge University Press, Cambridge (2002)Google Scholar
  19. 19.
    Vapnik, V.V.: Statistical Learning Theory. John Wiley and Sons, Chichester (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • H. Jill Lin
    • 1
  • Salvador Ruiz-Correa
    • 1
    • 2
  • Raymond W. Sze
    • 1
    • 2
  • Michael L. Cunningham
    • 1
    • 2
  • Matthew L. Speltz
    • 1
  • Anne V. Hing
    • 2
  • Linda G. Shapiro
    • 1
  1. 1.University of WashingtonSeattleUSA
  2. 2.Children’s Hospital and Regional Medical CenterSeattleUSA

Personalised recommendations