Advertisement

Advances on Medical Imaging and Computing

  • Tianzi Jiang
  • Xiaobo Li
  • Gaolong Gong
  • Meng Liang
  • Lixia Tian
  • Fuchun Li
  • Yong He
  • Yufeng Zang
  • Chaozhe Zhu
  • Shuyu Li
  • Songyuan Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3765)

Abstract

In this article, we present some advances on medical imaging and computing at the National Laboratory of Pattern Recognition (NLPR) in the Chinese Academy of Sciences. The first part is computational neuroanatomy. Several novel methods on segmentations of brain tissue and anatomical substructures, brain image registration, and shape analysis are presented. The second part consists of brain connectivity, which includes anatomical connectivity based on diffusion tensor imaging (DTI), functional and effective connectivity with functional magnetic resonance imaging (fMRI). It focuses on abnormal patterns of brain connectivity of patients with various brain disorders compared with matched normal controls. Finally, some prospects and future research directions in this field are also given.

Keywords

Attention Deficit Hyperactivity Disorder Diffusion Tensor Image Functional Connectivity Markov Random Field Posterior Cingulate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, C.Z., Jiang, T.Z.: Multi-context Fuzzy Clustering for Separation of Brain Tissues in MR Images. NeuroImage 18, 685–696 (2003)CrossRefGoogle Scholar
  2. 2.
    Yang, F.G., Jiang, T.Z.: Pixon-Based Image Segmentation With Markov Random Fields. IEEE Trans Imag Proc 12, 1552–1559 (2003)CrossRefGoogle Scholar
  3. 3.
    Fan, Y., Jiang, T.Z., Evans, D.J.: Volumetric Segmentation of Brain Images Using Parallel Genetic Algorithm. IEEE Trans Med Imaging 21, 904–909 (2002)CrossRefGoogle Scholar
  4. 4.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models- their training and application. Computer vision and image understanding 61, 38–59 (1995)CrossRefGoogle Scholar
  5. 5.
    Li, S.Y., Zhu, L.T., Jiang, T.Z.: Active shape model segmentation using local edge structures and adaBoost. In: Yang, G.-Z., Jiang, T.-Z. (eds.) MIAR 2004. LNCS, vol. 3150, pp. 121–128. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Tang, S.Y., Jiang, T.Z.: Fast Nonrigid Medical Inage Registration by Fluid Model. In: Proceedings of ACCV 2004, Jeju, Korea, vol. II, pp. 914–919 (2004a)Google Scholar
  7. 7.
    Tang, S.Y., Jiang, T.Z.: Nonrigid Registration of Medical image By Maxwell Model of Viscoelasticity. In: Proceedings of ISBI 2004, Arlington, USA, pp. 1443–1446 (2004b)Google Scholar
  8. 8.
    Tang, S.Y., Jiang, T.Z.: Non-rigid Registration of Medical Image by Linear Singular Blending Techniques. Pattern Recogn Lett. 25, 399–405 (2004c)CrossRefGoogle Scholar
  9. 9.
    Zhu, L.T., Jiang, T.Z.: Parameterization of 3D Brain Structures for Statistical Shape Analysis. In: Proceedings of SPIE Medical Imaging 2004, California, USA, pp. 14–17 (2004)Google Scholar
  10. 10.
    Gong, G.L., Jiang, T.Z., Zhu, C.Z., Zang, Y.F., Wang, F., Xie, S., Xiao, J.X., Guo, X.M.: Asymmetry Analysis of Cingulum Based on Scale-Invariant Parameterization by Diffusion Tensor. Hum Brain Mapp 24, 92–98 (2005)CrossRefGoogle Scholar
  11. 11.
    Tononi, G., McIntosh, A.R., Russell, D.P., Edelman, G.M.: Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 (1998)CrossRefGoogle Scholar
  12. 12.
    Katanoda, K., Matsuda, Y., Sugishita, M.: A spatial-temporal regression model for the analysis of functional MRI data. Neuroimage 17, 1415–1428 (2002)CrossRefGoogle Scholar
  13. 13.
    Duann, J.R., Jung, T.P., Kuo, W.J., Yeh, T.C., Makeig, S., Hsieh, J.C., Sejnowski, J.T.: Single-Trial Variability in Event-Related BOLD Signals. NeuroImage 15, 823–835 (2002)CrossRefGoogle Scholar
  14. 14.
    Lu, Y.L., Jiang, T.Z., Zang, Y.F.: A Split-merge Based Region Growing Method for the Analysis of fMRI Data. Hum Brain Mapp. 22, 271–279 (2004)CrossRefGoogle Scholar
  15. 15.
    Lu, Y.L., Jiang, T.Z., Zang, Y.F.: Region Growing Method for the Analysis of fMRI Data. NeuroImage 20, 455–465 (2003)CrossRefGoogle Scholar
  16. 16.
    Lu, Y.L., Jiang, T.Z., Zang, Y.F.: Single-Trial Variable Model for Event-Related fMRI Data Analysis. IEEE Transactions on Medical Imaging 24, 236–245 (2005)CrossRefGoogle Scholar
  17. 17.
    Zang, Y.F., Jiang, T.Z., Lu, Y.L., He, Y.: Lixia Tian: Regional Honogeneity Based Approach to fMRI Data Analysis. NeuroImage 22, 394–400 (2004)CrossRefGoogle Scholar
  18. 18.
    Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.: Functional connectivity: the principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13, 5–14 (1993a)Google Scholar
  19. 19.
    Friston, K.J., Frith, C.D., Frackowiak, R.S.: Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp. 1, 69–80 (1993b)CrossRefGoogle Scholar
  20. 20.
    Jiang, T.Z., He, Y., Zang, Y.F., Weng, X.C.: Modulation of Functional Connectivity During the Rest State and the Task State. Hum Brain Mapp. 22, 63–71 (2004)CrossRefGoogle Scholar
  21. 21.
    He, Y., Zang, Y.F., Jiang, T.Z., Liang, M., Gong, G.L.: Detecting Functional Connectivity of the Cerebellum Using Low Frequency Fluctuations (LFFs). In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 907–915. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Stein, T., Moritz, C., Quigley, M., Cordes, D., Haughton, V., Meyerand, E.: Functional connectivity in the thalamus and hippocampus studied with fMRI. Am J Neuroradiol 21, 1397–1401 (2000)Google Scholar
  23. 23.
    Zhu, C., Zang, Y., Liang, M., Tian, L., He, Y., Li, X., Sui, M., Wang, Y., Jiang, T.: Discriminative analysis of brain function at resting-state for attention-deficit/Hyperactivity disorder. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 468–475. Springer, Heidelberg (2005) (in press)Google Scholar
  24. 24.
    Hariri, A.R., Weinberger, D.R.: Imaging genomics. Br Med Bull 65, 259–270 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tianzi Jiang
    • 1
  • Xiaobo Li
    • 1
  • Gaolong Gong
    • 1
  • Meng Liang
    • 1
  • Lixia Tian
    • 1
  • Fuchun Li
    • 1
  • Yong He
    • 1
  • Yufeng Zang
    • 1
  • Chaozhe Zhu
    • 1
  • Shuyu Li
    • 1
  • Songyuan Tang
    • 1
  1. 1.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingP. R. China

Personalised recommendations