A Topologically Faithful, Tissue-Guided, Spatially Varying Meshing Strategy for Computing Patient-Specific Head Models for Endoscopic Pituitary Surgery Simulation

  • M. A. Audette
  • H. Delingette
  • A. Fuchs
  • O. Astley
  • K. Chinzei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3765)


This paper presents a method for tessellating tissue boundaries and their interiors, given as input a tissue map consisting of relevant classes of the head, in order to produce anatomical models for finite element-based simulation of endoscopic pituitary surgery. Our surface meshing method is based on the simplex model, which is initialized by duality from the topologically accurate results of the Marching Cubes algorithm, and which features explicit control over mesh scale, while using tissue information to adhere to relevant boundaries. Our mesh scale strategy is spatially varying, based on the distance to a central point or linearized surgical path. The tetrahedralization stage also features a spatially varying mesh scale, consistent with that of the surface mesh.


Surface Mesh Anatomical Model Mesh Scale Marching Cube Algorithm Marching Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astley, O., Hayward, V.: Multirate Haptic Simulation Achieved by Coupling Finite Element Meshes Through Norton Equivalents. In: IEEE Int. Conf. Rob. Auto. (1998)Google Scholar
  2. 2.
    Audette, M.A., et al.: Towards Patient-specific Anatomical Model Generation for Finite Element-based Surgical Simulation. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 356–361. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Audette, M.A., Chinzei, K.: The Application of Embedded and Tubular Structure to Tissue Identification for the Computation of Patient-Specific Neurosurgical Simulation Models. In: Cotin, S., Metaxas, D. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 203–210. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cappabianca, P., et al.: Atlas of Endoscopic Anatomy for Endonasal Intracranial Surgery. Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Ciric, I., et al.: Complications of Transsphenoidal Surgery: Results of a National Survey, Review of the Literature, and Personal Experience. Neurosurg 40(2), 225–236 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    de Bruin, P.W., et al.: Improving Triangle Mesh Quality with Surface Nets. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 804–813. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Delingette, H.: General Object Reconstruction Based on Simplex Meshes. Int. J. Comp. Vis. 32(2), 111–146 (1999)CrossRefGoogle Scholar
  8. 8.
    Fuchs, A.: Almost Regular Triangulations of Trimmed NURBS-Solids. Eng. w. Comput. 17, 55–65 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lorensen, W., Cline, H.: Marching Cubes: a High Resolution 3D Surface Construction Algorithm. Computer Graphics 21(4), 163–170 (1987)CrossRefGoogle Scholar
  10. 10.
    Schroeder, W., et al.: Decimation of Triangle Meshes. Comput. Graph. SIGGRAPH 1992 26(2), 65–70 (1992)CrossRefGoogle Scholar
  11. 11.
    Shewchuk, J.R.: What is a Good Linear Element? Interpolation, Conditioning and Quality Measures. In: 11th Int. Meshing Roundtbl. Conf., pp. 115–126 (2002)Google Scholar
  12. 12.
    Vasilevskiy, A., Siddiqi, K.: Flux Maximizing Geometric Flows. IEEE Trans. Patt. Anal. & Mach. Intel. 24(2), 1565–1578 (2002)CrossRefGoogle Scholar
  13. 13.
    VTK: Visualization Toolkit,
  14. 14.
    Zhang, Y., Bajaj, C., Sohn, B.S.: 3D Finite Element Meshing from Imaging Data. Computer Method in Applied Mechanics and Engineering (2005) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. A. Audette
    • 1
  • H. Delingette
    • 1
  • A. Fuchs
    • 1
  • O. Astley
    • 1
  • K. Chinzei
    • 1
  1. 1.AIST, Surgical Assist GroupTsukubaJapan

Personalised recommendations