Advertisement

A Novel Multifaceted Virtual Craniofacial Surgery Scheme Using Computer Vision

  • A. S. Chowdhury
  • S. M. Bhandarkar
  • E. W. Tollner
  • G. Zhang
  • J. C. Yu
  • E. Ritter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3765)

Abstract

The paper addresses the problem of virtual craniofacial reconstruction from a set of Computer Tomography (CT) images, with the multiple objectives of achieving accurate local matching of the opposable fracture surfaces and preservation of the global shape symmetry and the biomechanical stability of the reconstructed mandible. The first phase of the reconstruction, with the mean squared error as the performance metric, achieves the best possible local surface matching using the Iterative Closest Point (ICP) algorithm and the Data Aligned Rigidity Constrained Exhaustive Search (DARCES) algorithm each used individually and then in a synergistic combination. The second phase, which consists of an angular perturbation scheme, optimizes a composite reconstruction metric. The composite reconstruction metric is a linear combination of the mean squared error, a global shape symmetry term and the surface area which is shown to be a measure of biomechanical stability. Experimental results, including a thorough validation scheme on simulated fractures in phantoms of the craniofacial skeleton, are presented.

Keywords

Mean Square Error Iterative Close Point Iterative Close Point Biomechanical Stability Computer Tomography Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    King, R.E., Scianna, J.M., Petruzzelli, G.J.: Mandible fracture patterns: a suburban trauma center experience. American Journal of Otolaryngology 25(5), 301–307 (2004)CrossRefGoogle Scholar
  2. 2.
    Ogundare, B.O., Bonnick, A., Bayley, N.: Pattern of mandibular fractures in an urban major trauma center. Journal of Oral & Maxillofacial Surgery 61(6), 713–718 (2003)CrossRefGoogle Scholar
  3. 3.
    Zahl, C., Muller, D., Felder, S., Gerlach, K.L.: Cost of miniplate osteosynthesis for treatment of mandibular fractures: a prospective evaluation. Gesundheitswesen 65(10), 561–565 (2003)CrossRefGoogle Scholar
  4. 4.
    Mollemans, W., Schutyser, F., Nadjmi, N., Suetens, P.: Very fast soft tissue predictions with mass tensor model for maxillofacial surgery planning systems. In: Proc. of 9th Annual Conference of the International Society for Computer Aided Surgery, pp. 491–496 (2005)Google Scholar
  5. 5.
    Keeve, E., Girod, S., Girod, B.: Craniofacial Surgery Simulation. In: Proc. of Visualization in Biomedical Computing, pp. 541–546. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Enciso, R., Memon, A., Neumann, U., Mah, J.: The Virtual Cranio-Facial Patient Project. In: Proc. of 3D Imaging (Medical Imaging Session) (2003)Google Scholar
  7. 7.
    Sarti, A., Gori, R., Marchetti, C., Bianchi, A., Lamberti, C.: Maxillofacial Virtual Surgery from 3D CT Images. In: Akay, M., Marsh, A. (eds.) VR in medicine. IEEE EMBS Series. IEEE Press, Los Alamitos (1999)Google Scholar
  8. 8.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. PAMI 14(2), 239–256 (1992)Google Scholar
  9. 9.
    Granger, S., Pennec, X., Roche, A.: Rigid Point-Surface Registration Using an EM variant of ICP for Computer Guided Oral Implantology. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 752–761. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Chen, C.S.: RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images. IEEE Trans. PAMI 21(11), 1229–1234 (1999)Google Scholar
  11. 11.
    Rogers, M., Graham, J.: Robust Active Shape Model Search for Medical Image Analysis. In: Proc. of Int. Conf. on Medical Image Understanding and Analysis (MIUA), Portsmouth, UK (2002)Google Scholar
  12. 12.
    Bhandarkar, S.M., Chowdhury, A.S., Tang, Y., Yu, J., Tollner, E.W.: Surface Matching Algorithms for Computer Aided Reconstructive Plastic Surgery. In: Proc. of IEEE Int. Symposium on Biomedical Imaging (ISBI), Arlington, USA, pp. 740–743 (2004)Google Scholar
  13. 13.
    Goldstein, H.: Classical Mechanics,  Ch. 5. Addison-Wesley, Reading (1982)Google Scholar
  14. 14.
    Wang, Y., Peterson, B., Staib, L.: Shape-based 3D Surface Correspondence Using Geodesics and Local Geometry. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. II, pp. 644–651 (2000)Google Scholar
  15. 15.
    Pohl, K.M., Warfield, S.K., Kikinis, R., Grimson, W.E.L., Wells, W.M.: Coupling Statistical Segmentation and PCA Shape Modeling. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 151–159. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Kim, W.Y., Kak, A.C.: 3-D Object Recognition Using Bipartite Matching Embedded in Discrete Relaxation. IEEE Trans. PAMI 13(3), 224–251 (1991)Google Scholar
  17. 17.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Log. Quart. 2 (1955)Google Scholar
  18. 18.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. PAMI 9(5), 698–700 (1987)Google Scholar
  19. 19.
    Bhandarkar, S.M., Chowdhury, A.S., Tollner, E.W., Yu, J.C., Ritter, E.W., Konar, A.: Surface Reconstruction for Computer Vision-based Craniofacial Surgery. In: Proc. of IEEE Int. Workshop on Applications of Computer Vision (WACV), Breckenridge, USA, pp. 257–262 (2005)Google Scholar
  20. 20.
    Prima, S., Ourselin, S., Ayache, N.: Computation of the Mid-Sagittal Plane in 3D Brain Images. IEEE Trans. on Medical Imaging 21(2), 122–138 (2002)CrossRefGoogle Scholar
  21. 21.
    Ardekani, B., Kershaw, J., Braun, M., Kanno, I.: Automatic Detection of the Mid-Sagittal Plane in 3-D Brain Images. IEEE Trans. Medical Imaging 16(6), 947–952 (1997)CrossRefGoogle Scholar
  22. 22.
    Tuzikov, A., Colliot, O., Bloch, I.: Brain Symmetry plane computation in MR images using inertia axes and optimization. In: Intl. Conf. on Pattern Recognition, vol. 1, pp. 10516–10519 (2002)Google Scholar
  23. 23.
    Gefan, S., Fan, Y., Bertrand, L., Nissanov, J.: Symmetry-based 3D Brain Reconstruction. IEEE Symp. Biomedical Imaging, 744–747 (2004)Google Scholar
  24. 24.
    Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., Kuhl, D.E.: Correlation methods for the centering, rotation and alignment of functional brain images. Journal of Nuclear Medicine 31(7), 1220–1226 (1990)Google Scholar
  25. 25.
    Shames, I.H.: Mechanics of deformable solids. Prentice-Hall Inc., Englewood Cliffs (1964)Google Scholar
  26. 26.
    Besl, P.J.: Surfaces in Early Range Image Understanding. PhD Thesis, Ch. 3, Univ. of Michigan (1986)Google Scholar
  27. 27.
    Suk, M., Bhandarkar, S.M.: Three-dimensional Object Recognition from Range Images,  Ch. 7. Springer, Tokyo (1992)Google Scholar
  28. 28.
    ImageJ Website, http://rsb.info.nih.gov
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. S. Chowdhury
    • 1
  • S. M. Bhandarkar
    • 1
  • E. W. Tollner
    • 2
  • G. Zhang
    • 2
  • J. C. Yu
    • 3
  • E. Ritter
    • 3
  1. 1.Department of Computer ScienceThe University of GeorgiaAthensUSA
  2. 2.Dept. of Biological & Agricultural EnggThe University of GeorgiaAthensUSA
  3. 3.Dept. of Plastic SurgeryThe Medical College of GeorgiaAugustaUSA

Personalised recommendations