Policy-Based Adaptive Routing in Autonomous WSNs

  • Carlos M. S. Figueiredo
  • Aldri L. dos Santos
  • Antonio A. F. Loureiro
  • José M. Nogueira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3775)


Wireless sensor networks (WSNs) are employed in different domains and applications. The resource constraint on such networks, many times composed of hundreds to thousands of devices, and the requirement of autonomous operation become their management a challenging task. This work applies policies, a well-known approach in network management, in the core task of routing in autonomous WSNs. Policies are used to establish rules to take dynamic actions on the network according to its state. Our scheme offers a high-level and flexible way to realize management tasks related to routing in WSNs, which can be defined in a progressive way as knowledge from the environment is acquired or application requirements change. Case studies employing a policy-based adaptive hybrid solution allows the autonomous selection of the best routing strategy in view of network conditions and application requirements. Simulation results show the benefits and resource savings offered by the use of policies for adaptive routing in WSNs.


Wireless Sensor Networks Routing Policy-based design 


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cyirci, E.: Wireless sensor networks: A survey. Computer Networks 38, 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications 11, 6–28 (2004)CrossRefGoogle Scholar
  3. 3.
    Boulis, A., Han, C.-C., Srivastava, M.B.: Design and implementation of a framework for efficient and programmable sensor networks. In: MobiSys (May 2003)Google Scholar
  4. 4.
    CISCO Systems, I.: White paper: Policy-based routing, Access (May 2005), [Online] Available:
  5. 5.
    Clark, D.: RFC 1102: Policy Routing in Internet Protocols. MIT Lab for Computer Science, Cambridge (1989)Google Scholar
  6. 6.
    Crossbow, Mica2 platform, Access (February 2004), [Online] Available:
  7. 7.
    Figueiredo, C.M., Nakamura, E.F., Loureiro, A.A.: Multi: A hybrid adaptive dissemination protocol for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 171–186. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Hedetniemi, S., Liestman, A.: A survey of gossiping and broadcasting in communication networks. Networks 18, 319–349 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination algorithms to application requirements. In: 1st SenSys, pp. 218–229. ACM Press, Los Angeles (2003)Google Scholar
  10. 10.
    Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocols for wireless microsensor networks. In: 33rd HICSS, Maui, Hawaii, USA (January 2000)Google Scholar
  11. 11.
    Inc, C.T.: Mote in-network programming user reference, Access (August 2004), [Online] Available:
  12. 12.
    Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing policies. In: 5th Int’l Workshop on Policies for Dist’d Systems and Networks (2004)Google Scholar
  13. 13.
    Kochhal, M., Schwiebert, L., Gupta, S.: Role-based hierarchical self organization for wireless ad hoc sensor networks. In: Proc. of the 2nd ACM Int’l Conf. on Wireless Sensor Networks and Applications, pp. 98–107. ACM Press, New York (2003)Google Scholar
  14. 14.
    Krishnan, R., Starobinski, D.: Message-efficient self-organization of wireless sensor networks. In: IEEE WCNC 2003, pp. 1603–1608 (March 2003)Google Scholar
  15. 15.
    Levis, P., Culler, D.: Maté: A tiny virtual machine for sensor networks. In: 10th Int’l Conf. on Architectural Support for Prog. Lang. and Operating Sys., pp. 85–95. ACM Press, New York (2002)Google Scholar
  16. 16.
    Levis, P., Patel, N., Culler, D.E., Shenker, S.: Trickle: A self-regulating algorithm for code propagation and maintenance in wireless sensor networks. In: 1st NSDI, pp. 15–28 (2004)Google Scholar
  17. 17.
    Nakamura, E.F., Figueiredo, C.M., Loureiro, A.A.: Information fusion for data dissemination in self-organizing wireless sensor networks. In: Lorenz, P., Dini, P. (eds.) ICN 2005. LNCS, vol. 3420, pp. 585–593. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    NS-2, The network simulator - ns-2, Access: (February 2004), [Online] Available
  19. 19.
    Perkins, C., Belding-Royer, E., Das, S.: Ad-hoc on-demand distance vector routing. RFC 3561 (2003)Google Scholar
  20. 20.
    Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In: ACM SIGCOMM 1994, pp. 234–244 (1994)Google Scholar
  21. 21.
    Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Communications of the ACM 43, 51–58 (2000)CrossRefGoogle Scholar
  22. 22.
    Ramasubramanian, V., Haas, Z., Sirer, E.: SHARP: A hybrid adaptive routing protocol for mobile ad hoc networks. In: 4th MobiHoc, pp. 303–314 (2003)Google Scholar
  23. 23.
    Shen, C., Srisathapornphat, C., Jaikaeo, C.: Sensor information networking architecture and applications. IEEE Personal Communication 8, 52–59 (2001)CrossRefGoogle Scholar
  24. 24.
    Sloman, M.: Policy driven management for distributed systems. Journal of Network and Systems Management 2, 333–360 (1994)CrossRefGoogle Scholar
  25. 25.
    Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd edn. California Technical Publishing, San Diego (1999)Google Scholar
  26. 26.
    Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.: Protocols for self-organization of a wireless sensor network. IEEE Personal Communications 7, 16–27 (2000)CrossRefGoogle Scholar
  27. 27.
    Tilak, S., Abu-Ghazaleh, N.B., Heinzelman, W.: A taxonomy of wireless micro-sensor network models. ACM Mobile Computing and Communications Review (MC2R) 6, 28–36 (2002)CrossRefGoogle Scholar
  28. 28.
    Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing in sensor networks. In: 1st SenSys, pp. 14–27. ACM Press, New York (2003)Google Scholar
  29. 29.
    Zhou, C., Krishnamachari, B.: Localized topology generation mechanisms for self-configuring sensor networks. In: IEEE Globecom, San Francisco, USA (December 2003)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2005

Authors and Affiliations

  • Carlos M. S. Figueiredo
    • 1
    • 2
  • Aldri L. dos Santos
    • 3
  • Antonio A. F. Loureiro
    • 1
  • José M. Nogueira
    • 1
  1. 1.Dept. of Computer ScienceFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.FUCAPI – Research and Tech. Innovation CenterManausBrazil
  3. 3.Dept. of Computer ScienceFederal University of CearáFortalezaBrazil

Personalised recommendations