Graph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer

  • Anant Madabhushi
  • Jianbo Shi
  • Mark Rosen
  • John E. Tomaszeweski
  • Michael D. Feldman
Conference paper

DOI: 10.1007/11566465_90

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3749)
Cite this paper as:
Madabhushi A., Shi J., Rosen M., Tomaszeweski J.E., Feldman M.D. (2005) Graph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer. In: Duncan J.S., Gerig G. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005. MICCAI 2005. Lecture Notes in Computer Science, vol 3749. Springer, Berlin, Heidelberg

Abstract

Recently there has been a great deal of interest in algorithms for constructing low-dimensional feature-space embeddings of high dimensional data sets in order to visualize inter- and intra-class relationships. In this paper we present a novel application of graph embedding in improving the accuracy of supervised classification schemes, especially in cases where object class labels cannot be reliably ascertained. By refining the initial training set of class labels we seek to improve the prior class distributions and thus classification accuracy. We also present a novel way of visualizing the class embeddings which makes it easy to appreciate inter-class relationships and to infer the presence of new classes which were not part of the original classification. We demonstrate the utility of the method in detecting prostatic adenocarcinoma from high-resolution MRI.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anant Madabhushi
    • 1
  • Jianbo Shi
    • 2
  • Mark Rosen
    • 2
  • John E. Tomaszeweski
    • 2
  • Michael D. Feldman
    • 2
  1. 1.Rutgers UniversityPiscatawayUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations