Precise segmentation of three-dimensional (3D) magnetic resonance angiography (MRA) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Our objective is to develop a specific segmentation scheme for accurately extracting vasculature from MRA images. Our proposed algorithm, called the capillary active contour (CAC), models capillary action where liquid can climb along the boundaries of thin tubes. The CAC, which is implemented based on level sets, is able to segment thin vessels and has been applied for verification on synthetic volumetric images and real 3D MRA images. Compared with other state-of-the-art MRA segmentation algorithms, our experiments show that the introduced capillary force can facilitate more accurate segmentation of blood vessels.


  1. 1.
    Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imag. 18, 946–956 (1999)CrossRefGoogle Scholar
  2. 2.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model based detection of tubular structures in 3D images. Computer Vision and Image Understanding 80, 130–171 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imag. 21, 61–75 (2002)CrossRefGoogle Scholar
  4. 4.
    Klein, A.K., Lee, F., Amini, A.A.: Quantitative coronary angiography with deformable spline models. IEEE Trans. Med. Imag. 16, 468–482 (1997)CrossRefGoogle Scholar
  5. 5.
    Yim, P.J., Boudewijn, G., Vasbiner, C., Ho, V.B., Choyke, P.L.: Isosurfaces as deformable models for magnetic resonance angiography. IEEE Trans. Med. Imag. 22, 875–881 (2003)CrossRefGoogle Scholar
  6. 6.
    Malladi, R., Sethian, J.A., Vermuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. and Machine Intell. 17, 158–174 (1995)CrossRefGoogle Scholar
  7. 7.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Computer Vision 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Chen, J., Amini, A.A.: Quantifying 3-D vascular structures in MRA images using hybrid PDE and geometric deformable models. IEEE Trans. Med. Imag. 23, 1251–1262 (2004)CrossRefGoogle Scholar
  9. 9.
    Lorigo, L.M., Faugeras, O., Grimson, W.E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.F.: CURVES: Curve evolution for vessel segmentation. Medical Image Analysis 5, 195–206 (2001)CrossRefGoogle Scholar
  10. 10.
    Ambrosio, L., Soner, H.M.: Level set approach to mean curvature flow in arbitrary codimension. J. Differential Geometry 43, 693–737 (1996)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53, 211–218 (1991)zbMATHCrossRefGoogle Scholar
  12. 12.
    Finn, R.: Equilibrium Capillary Surfaces. Springer, New York (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pingkun Yan
    • 1
  • Ashraf A. Kassim
    • 1
  1. 1.Department of Electrical & Computer EngineeringNational University of Singapore 

Personalised recommendations