Particle Filters, a Quasi-Monte Carlo Solution for Segmentation of Coronaries

  • Charles Florin
  • Nikos Paragios
  • Jim Williams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3749)


In this paper we propose a Particle Filter-based approach for the segmentation of coronary arteries. To this end, successive planes of the vessel are modeled as unknown states of a sequential process. Such states consist of the orientation, position, shape model and appearance (in statistical terms) of the vessel that are recovered in an incremental fashion, using a sequential Bayesian filter (Particle Filter). In order to account for bifurcations and branchings, we consider a Monte Carlo sampling rule that propagates in parallel multiple hypotheses. Promising results on the segmentation of coronary arteries demonstrate the potential of the proposed approach.


Gaussian Mixture Model Particle Filter Sampling Importance Successive Plane Vessel Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Avants, B.B., Williams, J.P.: An adaptive minimal path generation technique for vessel tracking in CTA/CE-MRA volume images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 707–716. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Descoteaux, M., Collins, L., Siddiqi, K.: Geometric flows for segmenting vasculature in MRI: Theory and validation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 500–507. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Doucet, A., de Freitas, J., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)zbMATHGoogle Scholar
  4. 4.
    Fearnhead, P., Clifford, P.: Online inference for well-log data. Journal of the Royal Statistical Society 65, 887–899 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Figueiredo, M., Leitao, J.: A nonsmoothing approach to the estimation of of vessel controus in angiograms. IEEE Transactions on Medical Imaging 14, 162–172 (1995)CrossRefGoogle Scholar
  6. 6.
    Frangi, A., Niessen, W., Nederkoorn, P., Elgersma, O., Viergever, M.: Three-dimensional model-based stenosis quantification of the carotid arteries from contrast-enhanced MR angiography. In: Mathematical Methods in Biomedical Image Analysis, pp. 110–118 (2000)Google Scholar
  7. 7.
    Gordon, N.: Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proceedings 140, 107–113 (1993)Google Scholar
  8. 8.
    Gordon, N.: On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing 10, 197–208 (2000)CrossRefGoogle Scholar
  9. 9.
    Gordon, N.: A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50, 174–188 (2002)CrossRefGoogle Scholar
  10. 10.
    Hart, M., Holley, L.: A method of Automated Coronary Artery Trackin in Unsubtracted Angiograms. IEEE Computers in Cardiology, 93–96 (1993)Google Scholar
  11. 11.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model based detection of tubular structures in 3d images. Computer Vision and Image Understanding 80, 130–171 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Malladi, R., Sethian, J.: A Real-Time Algorithm for Medical Shape Recovery. In: International Conference on Computer Vision, pp. 304–310 (1998)Google Scholar
  13. 13.
    Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 22–26 (1985)Google Scholar
  14. 14.
    Nain, D., Yezzi, A., Turk, G.: Vessel Segmentation Using a Shape Driven Flow. In: Medical Imaging Copmuting and Computer-Assisted Intervention (2004)Google Scholar
  15. 15.
    O’Donnell, T., Boult, T., Fang, X., Gupta, A.: The Extruded Generalized Cylider: A Deformable Model for Object Recovery. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 174–181 (1994)Google Scholar
  16. 16.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  17. 17.
    Petrocelli, R., Manbeck, K., Elion, J.: Three Dimentional Structue Recognition in Digital Angiograms using Gauss-Markov Models. IEEE Computers in Radiology, 101–104 (1993)Google Scholar
  18. 18.
    Rueckert, D., Burger, P., Forbat, S., Mohiadin, R., Yang, G.: Automatic Tracking of the Aorta in Cardiovascular MR images using Deformable Models. IEEE Transactions on Medical Imaging 16, 581–590 (1997)CrossRefGoogle Scholar
  19. 19.
    Sorantin, E., Halmai, C., Erbohelyi, B., Palagyi, K., Nyul, K., Olle, K., Geiger, B., Lindbichler, F., Friedrich, G., Kiesler, K.: Spiral-CT-based assesment of Tracheal Stenoses using 3D Skeletonization. IEEE Transactions on Medical Imaging 21, 263–273 (2002)CrossRefGoogle Scholar
  20. 20.
    West, W.: Modelling with mixtures. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics. Clarendon Press, Oxford (1993)Google Scholar
  21. 21.
    Yim, P., Choyke, P., Summers, R.: Grayscale Skeletonization of Small Vessels in Magnetic Resonance Angiography. IEEE Transactions on Medical Imaging 19, 568–576 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Charles Florin
    • 1
  • Nikos Paragios
    • 2
  • Jim Williams
    • 1
  1. 1.Imaging & Visualization DepartmentSiemens Corporate ResearchPrincetonUSA
  2. 2.CERTIS – Ecole Nationale des Ponts et ChausseesChamps-sur-MarneFrance

Personalised recommendations