Advertisement

Unified Point Selection and Surface-Based Registration Using a Particle Filter

  • Burton Ma
  • Randy E. Ellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3749)

Abstract

We propose an algorithm for jointly performing registration point selection and interactive, rigid, surface-based registration. The registration is computed using a particle filter that outputs a sampled representation of the distribution of the registration parameters. The distribution is propagated through a point selection algorithm derived from a stiffness model of surface-based registration, allowing the selection algorithm to incorporate knowledge of the uncertainties in the registration parameters. We show that the behavior of target registration error improves as the quality measure of the registration points increases.

Keywords

Selection Algorithm Particle Filter Model Point Point Selection Rotational Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (June 2000)Google Scholar
  2. 2.
    Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.: Geometrically stable sampling for the ICP algorithm. In: 3DIM 2003, Banff, Canada, October 2003. IEEE, Los Alamitos (2003)Google Scholar
  3. 3.
    Granger, S., Pennec, X.: Multi-scale EM-ICP: A fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Grimson, W.E.L., Ettinger, G.J., White, S.J., Lozano-Pérez, T., Wells III, W.M., Kikinis, R.: An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE T Med Imaging 15(2), 129–140 (1996)CrossRefGoogle Scholar
  5. 5.
    Iyun, O., Borschneck, D.P., Ellis, R.E.: Computer-assisted correction of bone deformities using A 6-DOF parallel spatial mechanism. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 232–240. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Julier, S.J., Uhlmann, J.K.: A general method for approximating nonlinear transformations of probability distributions. Technical report, Oxford University (1996)Google Scholar
  7. 7.
    Lavallée, S., Szeliski, R., Brunie, L.: Anatomy-based registration of three-dimensional medical images, range images, x-ray projections, and three-dimensional models using octree-splines. In: Computer-Integrated Surgery, pp. 115–143. The MIT Press, Cambridge (1996)Google Scholar
  8. 8.
    Lin, Q., Burdick, J., Rimon, E.: A stiffness-based quality measure for compliant grasps and fixtures. IEEE T Robotic Autom 16(6), 675–688 (2000)CrossRefGoogle Scholar
  9. 9.
    Ma, B., Ellis, R.E.: Spatial-stiffness analysis of surface-based registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 623–630. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ma, B., Ellis, R.E.: Surface-based registration with a particle filter. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 566–573. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Nahvi, A., Hollerbach, J.M.: The noise amplification index for optimal pose selection in robot calibration. In: IEEE ICRA, Minneapolis, Minnesota (April 1996)Google Scholar
  12. 12.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3DIM 2001, Québec City, Canada, pp. 145–152. IEEE, Los Alamitos (2001)Google Scholar
  13. 13.
    Simon, D.A.: Fast and Accurate Shape-Based Registration. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania (December 1996)Google Scholar
  14. 14.
    van der Merwe, R., Wan, E.: Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models. In: ICASSP (2003)Google Scholar
  15. 15.
    van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: The unscented particle filter. Technical Report CUED/F-INFENG/TR 380, Cambridge Univ. Dept. of Eng. (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Burton Ma
    • 1
  • Randy E. Ellis
    • 1
  1. 1.School of ComputingQueen’s University at KingstonCanada

Personalised recommendations