Skip to main content

Stimulus-Driven Unsupervised Synaptic Pruning in Large Neural Networks

  • Conference paper
Brain, Vision, and Artificial Intelligence (BVAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3704))

Included in the following conference series:

Abstract

We studied the emergence of cell assemblies out of locally connected random networks of integrate-and-fire units distributed on a 2D lattice stimulated with a spatiotemporal pattern in presence of independent random background noise. Networks were composed of 80% excitatory and 20% inhibitory units with initially balanced synaptic weights. Excitatory–excitatory synapses were modified according to a spike-timing-dependent synaptic plasticity (stdp) rule associated with synaptic pruning. We show that the application, in presence of background noise, of a recurrent pattern of stimulation let appear cell assemblies characterized by an internal pattern of converging projections and a feed-forward topology not observed with an equivalent random stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  2. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Google Scholar 

  3. Chechik, G., Meilijson, I., Ruppin, E.: Neuronal Regulation: A Mechanism for Synaptic Pruning During Brain Maturation. Neural Computation 11, 2061–2080 (1999)

    Article  Google Scholar 

  4. Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Rosenberg, J., Moreno, J.-M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 165–173. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Iglesias, J., Eriksson, J., Grize, F.T., Marco, V.A.E.P.: Dynamics of Pruning in Simulated Large-Scale Spiking Neural Networks. Biosystems 79, 11–20 (2005)

    Article  Google Scholar 

  6. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex 14, 933–944 (2004)

    Article  Google Scholar 

  7. Karmarkar, U.R., Buonomano, D.V.: A model of spike-timing dependent plasticity: one or two coincidence detectors? J. Neurophysiol. 88, 507–513 (2002)

    Google Scholar 

  8. Kelso, S.R., Ganong, A.H., Brown, T.H.: Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA 83, 5326–5330 (1986)

    Article  Google Scholar 

  9. Mimura, K., Kimoto, T., Okada, M.: Synapse efficiency diverge due to synaptic pruning following over-growth. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 031910 (2003)

    Article  Google Scholar 

  10. Quenet, B., Horcholle-Bossavit, G., Wohrer, A., Dreyfus, G.: Formal modeling with multistate neurones and multidimensional synapses. Biosystems 79, 21–32 (2005)

    Article  Google Scholar 

  11. Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N., Goldman-Rakic, P.S.: Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986)

    Article  Google Scholar 

  12. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  13. Song, S., Abbott, L.F.: Cortical Development and Remapping through Spike Timing-Dependent Plasticity. Neuron. 32, 339–350 (2001)

    Article  Google Scholar 

  14. Tyrrell, A., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.M., Rosenberg, J., Villa, A.E.P.: POEtic: An Integrated Architecture for Bio-Inspired Hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 129–140. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A.E.P. (2005). Stimulus-Driven Unsupervised Synaptic Pruning in Large Neural Networks. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_6

Download citation

  • DOI: https://doi.org/10.1007/11565123_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29282-1

  • Online ISBN: 978-3-540-32029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics