Skip to main content

Mind the Gaps: A New Splitting Strategy for Consistency Techniques

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

Classical methods for solving numerical CSPs are based on a branch and prune algorithm, a dichotomic enumeration process interleaved with a consistency filtering algorithm. In many interval solvers, the pruning step is based on local consistencies or partial consistencies. The associated pruning algorithms compute numerous data required to identify gaps within some domains, i.e. inconsistent intervals strictly included in the domain. However, these gaps are only used to compute the smallest approximation of the box enclosing all the solutions. This paper introduces a search strategy, named MindTheGaps, that takes advantage of the gaps identified during the filtering process. Gaps are collected with a negligible overhead, and are used to select the splitting direction as well as to define relevant cutting points within the domain. Splitting the domain by removing such gaps definitely reduces the search space. It also helps to discard some redundant solutions and helps the search algorithm to isolate different solutions. First experimental results show that MindTheGaps significantly improves performances of the search process.

Keywords

  • Interval Extension
  • Local Consistency
  • Narrowing Operator
  • Interval Vector
  • Pruning Step

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ratz, D.: Box-splitting strategies for the interval Gauss–Seidel step in a global optimization method. Computing 53, 337–354 (1994)

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. Hansen, E.: Global optimization using interval analysis. Marcel Deckler (1992)

    Google Scholar 

  3. Kearfott, R.: Rigorous global search: continuous problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  4. Lhomme, O.: Consistency techniques for numerical csps. In: IJCAI 1993, pp. 232–238 (1993)

    Google Scholar 

  5. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.: Revising hull and box consistency. In: International Conference on Logic Programming, pp. 230–244 (1999)

    Google Scholar 

  6. Benhamou, F., McAllister, D., Van Hentenryck, P.: CLP(intervals) revisited. In: Bruynooghe, M. (ed.) International Symposium of Logic Programming, pp. 124–138. MIT Press, Cambridge (1994)

    Google Scholar 

  7. Van Hentenryck, P., McAllister, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM, Journal of Numerical Analysis 34(2), 797–827 (1997)

    MATH  CrossRef  Google Scholar 

  8. Collavizza, H., Delobel, F., Rueher, M.: Comparing partial consistencies. Journal of Reliable Computing 5, 213–228 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. Lebbah, Y.: Contribution á la résolution de contraintes par consistance forte. Thése de doctorat, École des Mines de Nantes (1999)

    Google Scholar 

  10. Puget, J., Van Hentenryck, P.: A constraint satisfaction approach to a circuit design problem. Journal of Global Optimization 13, 75–93 (1998)

    MATH  CrossRef  Google Scholar 

  11. Jussien, N., Lhomme, O.: Dynamic domain splitting for numeric CSPs. In: European Conference on Artificial Intelligence, pp. 224–228 (1998)

    Google Scholar 

  12. Hansen, E., Greenberg, R.: An interval newton method. Applied Mathematics and Computations 12, 89–98 (1983)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Hyvönen, E.: Constraint reasoning based on interval arithmetic: the tolerance propagation approach. Artificial Intelligence 58, 71–112 (1992)

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. ILOG: Solver Reference manual (2002), http://www.ilog.com/product/jsolver

  15. Granvilliers, L.: Realpaver: Solving non linear constraints by interval computations. User’s manual (2003), http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver

  16. Macworth, A.: Consistency in networks of relations. Artificial Intelligence, 99–118 (1977)

    Google Scholar 

  17. Moore, R.: Interval analysis. Prentice-Hall, Englewood Cliffs (1977)

    Google Scholar 

  18. Kearfott, R.: A review of techniques in the verified solution of constrained global optimization problems. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations, pp. 23–59. Kluwer, Dordrecht (1996)

    Google Scholar 

  19. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  20. Lhomme, O.: Contribution á la résolution de contraintes sur les réels par propagation d’intervalles. Thése de doctorat, Université de Nice-Sophia Antipolis (1994)

    Google Scholar 

  21. Jermann, C., Trombettoni, G., Neveu, B., Rueher, M.: A constraint programming approach for solving rigid geometric systems. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 233–248. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  22. Batnini, H., Rueher, M.: Décomposition sémantique pour la résolution de systémes d’équations de distances. JEDAI 2 (2004); Édition spéciale JNPC (2003)

    Google Scholar 

  23. Traverso, C.: The posso test suite examples (2003), http://www.inria.fr/saga/POL/index.html

  24. Ceberio, M.: Contribution á l’étude des CSPs numériques sous et sur-contraints. Outils symboliques et contraintes flexibles continues. PhD thesis, Université de Nantes (2003)

    Google Scholar 

  25. Bordeaux, L., Monfroy, E., Benhamou, F.: Improved bounds on the complexity of kb-consistency. In: Kaufmann, M. (ed.) Proceeding of IJCAI 2001, pp. 303–308 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batnini, H., Michel, C., Rueher, M. (2005). Mind the Gaps: A New Splitting Strategy for Consistency Techniques. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_9

Download citation

  • DOI: https://doi.org/10.1007/11564751_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)