Skip to main content

Inter-distance Constraint: An Extension of the All-Different Constraint for Scheduling Equal Length Jobs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

We study a global constraint, the “inter-distance constraint” that ensures that the distance between any pair of variables is at least equal to a given value. When this value is 1, the inter-distance constraint reduces to the all-different constraint. We introduce an algorithm to propagate this constraint and we show that, when domains of the variables are intervals, our algorithm achieves arc-B-consistency. It provides tighter bounds than generic scheduling constraint propagation algorithms (like edge-finding) that could be used to capture this constraint. The worst case complexity of the algorithm is cubic but it behaves well in practice and it drastically reduces the search space. Experiments on special Job-Shop problems and on an industrial problem are reported.

Keywords

  • Global Constraint
  • Scheduling
  • Constraint Propagation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D., Cook, W.: A Computational Study of the Job-Shop Scheduling Problem. ORSA Journal on Computing 3(2), 149–156 (1991)

    MATH  Google Scholar 

  2. Artiouchine, K., Baptiste, P., Dürr, C.: Runway Sequencing with Holding Patterns, http://www.lix.polytechnique.fr/Labo/Konstantin.Artiouchine/ejor04.pdf

  3. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  4. Baptiste, P., Le Pape, C.: Edge-Finding Constraint Propagation Algorithms for Disjunctive and Cumulative Scheduling. In: Proc. 15th Workshop of the UK Planning Special Interest Group (1996)

    Google Scholar 

  5. Bayen, A.M., Tomlin, C.J.: Real-time discrete control law synthesis for hybrid systems using MILP: Application to congested airspace. In: Proceedings of the American Control Conference (2003)

    Google Scholar 

  6. Bayen, A.M., Tomlin, C.J., Ye, Y., Zhang, J.: MILP formulation and polynomial time algorithm for an aircraft scheduling problem, http://www.cherokee.stanford.edu/~bayen/publications.html

  7. Carlier, J., Pinson, E.: A Practical Use of Jackson’s Preemptive Schedule for Solving the Job-Shop Problem. Annals of Operations Research 26, 269–287 (1990)

    MATH  MathSciNet  Google Scholar 

  8. Carlier, J., Pinson, E.: Adjustment of Heads and Tails for the Job-Shop Problem. European Journal of Operational Research 78, 146–161 (1994)

    MATH  CrossRef  Google Scholar 

  9. Dorndorf, U., Pesch, E., Phan-Huy, T.: Solving the Open Shop Scheduling Problem. Journal of Scheduling 4, 157–174 (2001)

    MATH  CrossRef  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S., Simons, B.B., Tarjan, R.E.: Scheduling unit-time tasks with arbitrary release times and deadlines. SIAM Journal on Computing 10(2), 256–269 (1981)

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. Lenstra, J.K., Rinnooy Kan, A.H.G.: Computational complexity of discrete optimization problems. Ann. Discrete Math. 4, 121–140 (1979)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Lhomme, O.: Consistency Techniques for numeric CSPs. In: Proceedings of the thirteenth International Joint Conference on Artificial Intelligence, Chambéry, France (1993)

    Google Scholar 

  13. Lopez-Ortiz, A., Quimper, C.-G., Tromp, J., van Beek, P.: A fast and simple algorithm for bounds consistency of the alldifferent constraint. Proceedings of the 18th. In: International Joint Conference on Artificial Intelligence, Acapulco, Mexico (2003)

    Google Scholar 

  14. Martin, P.D., Shmoys, D.B.: A New Approach to Computing Optimal Schedules for the Job-Shop Scheduling Problem. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084. Springer, Heidelberg (1996)

    Google Scholar 

  15. Museux, N., Jeannin, L., Savéant, P., Le Huédé, F., Josset, F.-X., Mattioli, J.: Claire/Eclair©: Un environnement de modélisation et de résolution pour des applications d’optimisations combinatoires émbarquées. Journées Francophones de Programmation en Logique et de programmation par Contraintes, 2003.

    Google Scholar 

  16. Nuijten, W., Bousonville, T., Focacci, F., Godard, D., Le Pape, C.: Towards an industrial Manufacturing Scheduling Problem and Test Bed. In: Proc. of the 9th International Workshop on Project Management and Scheduling (2004)

    Google Scholar 

  17. Pinson, E.: Le problème de Job-Shop. Thèse de l’Université Paris VI (1988)

    Google Scholar 

  18. Puget, J.-F.: A fast algorithm for the bound consistency of all-diff constraints. In: Proc. 15th National Conference on Artificial Intelligence (1998)

    Google Scholar 

  19. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proc. 12th National Conference on Artificial Intelligence (1994)

    Google Scholar 

  20. Régin, J.-C.: The global minimum distance constraint. Technical report, ILOG (1997)

    Google Scholar 

  21. Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330. Springer, Heidelberg (1997)

    Google Scholar 

  22. Simons, B.: A fast algorithm for single processor scheduling. In: 19th Annual Symposium on the Foundations of Computer Science, October 1978, pp. 246–252 (1978)

    Google Scholar 

  23. Torres, P., Lopez, P.: On Not-First/Not-Last conditions in disjunctive scheduling. European Journal of Operational Research 127, 332–343 (2000)

    MATH  CrossRef  Google Scholar 

  24. Vilím, P.: o(n logn) filtering algorithms for unary resource constraint. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 335–347. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Artiouchine, K., Baptiste, P. (2005). Inter-distance Constraint: An Extension of the All-Different Constraint for Scheduling Equal Length Jobs. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_8

Download citation

  • DOI: https://doi.org/10.1007/11564751_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)