Skip to main content

Incremental Algorithms for Local Search from Existential Second-Order Logic

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

Local search is a powerful and well-established method for solving hard combinatorial problems. Yet, until recently, it has provided very little user support, leading to time-consuming and error-prone implementation tasks. We introduce a scheme that, from a high-level description of a constraint in existential second-order logic with counting, automatically synthesises incremental penalty calculation algorithms. The performance of the scheme is demonstrated by solving real-life instances of a financial portfolio design problem that seem unsolvable in reasonable time by complete search.

Keywords

  • Local Search
  • Penalty Mapping
  • Constraint Satisfaction Problem
  • Local Search Algorithm
  • Recursive Call

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_7
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester (1997)

    MATH  Google Scholar 

  2. Ågren, M., Flener, P., Pearson, J.: Set variables and local search. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 19–33. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  3. Cadoli, M., Palopoli, L., Schaerf, A., Vasile, D.: NPSPEC: An executable specification language for solving all problems in NP. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 16–30. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  4. Crawford, J.M., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for search problems. In: Proc. of KR 1996, pp. 148–159. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  5. Fagin, R.: Contributions to the Model Theory of Finite Structures, PhD thesis, UC Berkeley, California, USA (1973)

    Google Scholar 

  6. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for modelling combinatorial problems. In: Bruynooghe, M. (ed.) LOPSTR 2004. LNCS, vol. 3018, pp. 214–232. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  7. Flener, P., Pearson, J., Reyna, L.G.: Financial portfolio optimisation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 227–241. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  8. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  9. Mancini, T.: Declarative constraint modelling and specification-level reasoning. PhD thesis, Università degli Studi di Roma “La Sapienza”, Italy (2004)

    Google Scholar 

  10. Michel, L., Van Hentenryck, P.: Localizer: A modeling language for local search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 237–251. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  11. Michel, L., Van Hentenryck, P.: A constraint-based architecture for local search. ACM SIGPLAN Notices 37(11), 101–110 (2002); Proc. of OOPSLA 2002

    CrossRef  Google Scholar 

  12. Nareyek, A.: Using global constraints for local search. In: Constraint Programming and Large Scale Discrete Optimization. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 57, pp. 9–28. American Mathematical Society (2001)

    Google Scholar 

  13. Sivertsson, O.: Construction of synthetic CDO Squared. Master’s thesis, Computing Science, Department of Information Technology, Uppsala University, Sweden (2005)

    Google Scholar 

  14. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Van Hentenryck, P., Michel, L., Liu, L.: Constraint-based combinators for local search. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 47–61. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  16. Walser, J.P.: Integer Optimization by Local Search. LNCS, vol. 1637. Springer, Heidelberg (1999)

    MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ågren, M., Flener, P., Pearson, J. (2005). Incremental Algorithms for Local Search from Existential Second-Order Logic. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_7

Download citation

  • DOI: https://doi.org/10.1007/11564751_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)