Skip to main content

Maintaining Arc Consistency Algorithms During the Search Without Additional Space Cost

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

In this paper, we detail the versions of the arc consistency algorithms for binary constraints based on list of supports and last value when they are maintained during the search for solutions. In other words, we give the explicit codes of MAC-6 and MAC-7 algorithms. Moreover, we present an original way to restore the last values of AC-6 and AC-7 algorithms in order to obtain a MAC version of these algorithms whose space complexity remains in O(ed) while keeping the O(ed 2) time complexity on any branch of the tree search, where d is the size of the largest domain and e is the number of constraints. This result outperforms all previous studies.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_39
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessière, C.: Arc-consistency and arc-consistency again. Artificial Intelligence 65(1), 179–190 (1994)

    CrossRef  Google Scholar 

  2. Bessière, C., Freuder, E.C., Régin, J.-C.: Using constraint metaknowledge to reduce arc consistency computation. Artificial Intelligence 107(1), 125–148 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. Bessière, C., Régin, J.-C.: Refining the basic constraint propagation algorithm. In: Proceedings of IJCAI 2001, Seattle, WA, USA, pp. 309–315 (2001)

    Google Scholar 

  4. Chmeiss, A., Jégou, P.: Efficient path-consistency propagation. Journal on Artificial Intelligence Tools 7(2), 79–89 (1998)

    Google Scholar 

  5. Lecoutre, C., Boussemart, F., Hemery, F.: Exploiting multidirectionnality in coarse-grained arc consistency algorithm. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 480–494. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)

    MATH  CrossRef  Google Scholar 

  7. Mohr, R., Henderson, T.C.: Arc and path consistency revisited. Artificial Intelligence 28, 225–233 (1986)

    CrossRef  Google Scholar 

  8. Régin, J.-C.: Développement d’outils algorithmiques pour l’Intelligence Artificielle. Application à la chimie organique. PhD thesis, Université de Montpellier II (1995)

    Google Scholar 

  9. van Dongen, M.R.: Ac-3d an efficient arc-consistency algorithm with a low space-complexity. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 755–760. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  10. van Dongen, M.R.: Lightweight arc consistency algorithms. Technical Report TR-01-2003, Cork Constraint Computation Center, University College Cork (2003)

    Google Scholar 

  11. van Dongen, M.R.: Lightweight mac algorithms. Technical Report TR-02-2003, Cork Constraint Computation Center, University College Cork (2003)

    Google Scholar 

  12. Van Hentenryck, P., Deville, Y., Teng, C.M.: A generic arc-consistency algorithm and its specializations. Artificial Intelligence 57, 291–321 (1992)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Zhang, Y., Yap, R.: Making ac-3 an optimal algorithm. In: Proceedings of IJCAI 2001, Seattle, WA, USA, pp. 316–321 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Régin, JC. (2005). Maintaining Arc Consistency Algorithms During the Search Without Additional Space Cost. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_39

Download citation

  • DOI: https://doi.org/10.1007/11564751_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)