Skip to main content

Symmetry and Consistency

  • Conference paper
  • 1261 Accesses

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

We introduce a novel and exciting research area: symmetrising levels of consistency to produce stronger forms of consistency and more efficient mechanisms for establishing them. We propose new levels of consistency for Constraint Satisfaction Problems (CSPs) incorporating the symmetry group of a CSP. We first define Sym(i,j)-consistency, show that even Sym(1,0)-consistency can prune usefully, and study some consequences of maintaining Sym(i, 0)- consistency. We then present pseudocode for SymPath consistency, and a symmetrised version of singleton consistency, before presenting experimental evidence of these algorithms’ practical effectiveness. With this contribution we establish the study of symmetry-based levels of consistency of CSPs.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_22
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flener, P., Frisch, A.M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 73–87. Springer, Heidelberg (1999)

    Google Scholar 

  3. Brown, C.A., Finkelstein, L., Purdom Jr., P.W.: Backtrack searching in the presence of symmetry. Nordic Journal of Computing 3(3), 203–219 (1996)

    MathSciNet  Google Scholar 

  4. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.A.: Tractable symmetry breaking using restricted search trees. In: Proc. ECAI 2004 (2004)

    Google Scholar 

  5. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)

    MATH  CrossRef  Google Scholar 

  6. Bessière, C., Régin, J.-C.: Refining the basic constraint propagation algorithm. In: Proc. IJCAI 2001 (2001)

    Google Scholar 

  7. Zhang, Y., Yap, R.H.C.: Making AC-3 an optimal algorithm. In: Proc. IJCAI 2001 (2001)

    Google Scholar 

  8. Gent, I.P., McDonald, I.: Symmetry and propagation: Refining an AC algorithm. In: Proc. SymCon 2003 (2003)

    Google Scholar 

  9. Kelsey, T., Linton, S.A., Roney-Dougal, C.M.: New developments in symmetry breaking in search using computational group theory. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 199–210. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  10. Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM 29(1), 24–32 (1982)

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. Freuder, E.C.: A sufficient condition for backtrack-bounded search. Journal of the ACM 37(4), 755–761 (1985)

    CrossRef  MathSciNet  Google Scholar 

  12. Seress, A.: Permutation group algorithms. Cambridge tracts in mathematics, vol. 152. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  13. Puget, J.-F.: Symmetry breaking using stabilizers. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 585–599. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  14. Bessière, C., Régin, J.-C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc consistency algorithm. Artificial Intelligence 165, 165–185 (2005)

    MATH  CrossRef  MathSciNet  Google Scholar 

  15. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfaction problem. In: Proc. IJCAI 1997, pp. 412–417 (1997)

    Google Scholar 

  16. Barták, R., Erben, R.: A new algorithm for singleton arc consistency. In: Proc. FLAIRS 2004 (2004)

    Google Scholar 

  17. Bessière, C., Debruyne, R.: Optimal and suboptimal singleton arc consistency algorithms. In: Proc. IJCAI 2005 (2005)

    Google Scholar 

  18. Wallace, M.G., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic programming. ICL Systems Journal 12(1), 159–200 (1997)

    Google Scholar 

  19. Gent, I.P., Harvey, W., Kelsey, T.: Groups and constraints: Symmetry breaking during search. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 415–430. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  20. Gent, I.P., Harvey, W., Kelsey, T., Linton, S.A.: Generic SBDD using computational group theory. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 333–347. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gent, I.P., Kelsey, T., Linton, S., Roney-Dougal, C. (2005). Symmetry and Consistency. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_22

Download citation

  • DOI: https://doi.org/10.1007/11564751_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)