Skip to main content

CP(Graph): Introducing a Graph Computation Domain in Constraint Programming

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

In an increasing number of domains such as bioinformatics, combinatorial graph problems arise. We propose a novel way to solve these problems, mainly those that can be translated to constrained subgraph finding. Our approach extends constraint programming by introducing CP(Graph), a new computation domain focused on graphs including a new type of variable: graph domain variables as well as constraints over these variables and their propagators. These constraints are subdivided into kernel constraints and additional constraints formulated as networks of kernel constraints. For some of these constraints a dedicated global constraint and its associated propagator are sketched. CP(Graph) is integrated with finite domain and finite sets computation domains, allowing the combining of constraints of these domains with graph constraints.

A prototype of CP(Graph) built over finite domains and finite sets in Oz is presented. And we show that a problem of biochemical network analysis can be very simply described and solved within CP(Graph).

Keywords

  • Undirected Graph
  • Constraint Program
  • Domain Variable
  • Computation Domain
  • Global Constraint

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_18
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deville, Y., Gilbert, D., van Helden, J., Wodak, S.: An overview of data models for the analysis of biochemical networks. Briefings in Bioinformatics 4(3), 246–259 (2003)

    CrossRef  Google Scholar 

  2. Gervet, C.: Interval propagation to reason about sets: Definition and implementation of a practical language. CONSTRAINTS Journal 1(3), 191–244 (1997)

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. Laurière, J.: A Language and a Program for Stating and Solving Combinatorial Problems. Artificial Intelligence 10, 29–127 (1978)

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. Gervet, C.: New structures of symbolic constraint objects: sets and graphs. In: Third Workshop on Constraint Logic Programming (WCLP 1993), Marseille (1993)

    Google Scholar 

  5. Lepape, C., Perron, L., Regin, J.C., Shaw, P.: A robust and parallel solving of a network design problem. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 633–648. Springer, Heidelberg (2002)

    Google Scholar 

  6. Beldiceanu, N.: Global constraints as graph properties on structured network of elementary constraints of the same type. Technical Report T2000/01, SICS (2000)

    Google Scholar 

  7. Sellmann, M.: Cost-based filtering for shorter path constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  8. Cambazard, H., Bourreau, E.: Conception d’une contrainte globale de chemin. In: 10th Journ. nat. sur la résolution pratique de problémes NP-complets (JNPC 2004), pp. 107–121 (2004)

    Google Scholar 

  9. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  10. Courcelle, B.: On the expression of graph properties in some fragments of monadic second-order logic. In: Descriptive complexity and finite models, Providence, AMS, pp. 38–62 (1997)

    Google Scholar 

  11. Dooms, G., Deville, Y., Dupont, P.: A mozart implementation of cp(bionet). In: Van Roy, P. (ed.) MOZ 2004. LNCS, vol. 3389, pp. 237–250. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  12. Pesant, G., Gendreau, M., Potvin, J., Rousseau, J.: An exact constraint logic programming algorithm for the travelling salesman with time windows. Transp. Science 32, 12–29 (1996)

    CrossRef  Google Scholar 

  13. Courcelle, B.: The monadic second-order logic of graphs. Inf. Comput. 85, 12–75 (1990)

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. Quesada, L., Roy, P.V., Deville, Y.: The reachability propagator. Research Report 2005-2007, (UCL/INGI)

    Google Scholar 

  15. Bessière, C., Van Hentenryck, P.: To be or not to be ... a global constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 789–794. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  16. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal ACM 48(4), 723–760 (2001)

    MATH  CrossRef  Google Scholar 

  17. Michel, L., Van Hentenryck, P.: Maintaining longest paths incrementally. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 540–554. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  18. Consortium, M.: The mozart programming system version 1.2.5 (December 2002), http://www.mozart-oz.org/

  19. Lemer, C., Antezana, E., Couche, F., Fays, F., Santolaria, X., Janky, R., Deville, Y., Richelle, J., Wodak, S.J.: The aMAZE lightbench: a web interface to a relational database of cellular processes. Nucleic Acids Research 32, D443–D448 (2004)

    CrossRef  Google Scholar 

  20. Croes, D.: Recherche de chemins dans le réseau métabolique et mesure de la distance métabolique entre enzymes. PhD thesis, ULB, Brussels (2005) (in preparation)

    Google Scholar 

  21. Dooms, G., Deville, Y., Dupont, P.: Recherche de chemins contraints dans les réseaux biochimiques. In: Mesnard, F. (ed.) Programmation en logique avec contraintes, actes des JFPLC 2004, Hermes Science, June 2004, pp. 109–128 (2004)

    Google Scholar 

  22. Gecode: Generic Constraint Development (2005), http://www.gecode.org/

  23. Zampelli, S., Deville, Y., Dupont, P.: Approximate constrained subgraph matching. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 832–836. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dooms, G., Deville, Y., Dupont, P. (2005). CP(Graph): Introducing a Graph Computation Domain in Constraint Programming. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_18

Download citation

  • DOI: https://doi.org/10.1007/11564751_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)