Skip to main content

Tractable Clones of Polynomials over Semigroups

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

We contribute to the algebraic study of the complexity of constraint satisfaction problems. We give a new sufficient condition on a set of relations Γ over a domain S for the tractability of CSP(Γ): if S is a block-group (a particular class of semigroups) of exponent ω and Γ is a set of relations over S preserved by the operation defined by the polynomial f(x,y,z) = xy ω− 1 z over S, then CSP(Γ) is tractable. This theorem strictly improves on results of Feder and Vardi and Bulatov et al. and we demonstrate it by reproving an upper bound of Klíma et al.

We also investigate systematically the tractability of CSP(Γ) when Γ is a set of relations closed under operations that are all expressible as polynomials over a finite semigroup S. In particular, if S is a nilpotent group, we show that CSP(Γ) is tractable iff one of these polynomials defines a Malt’sev operation, and conjecture that this holds for all groups.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proc. of 43rd Foundations of Comp. Sci (FOCS 2002), pp. 649–658 (2002)

    Google Scholar 

  2. Bulatov, A.: Malt’sev constrains are tractable. In: Electronic Colloquium on Computational Complexity (ECCC) (2002)

    Google Scholar 

  3. Bulatov, A., Dalmau, V.: A simple algorithm for Malt’sev constraints (submitted 2005)

    Google Scholar 

  4. Bulatov, A., Jeavons, P.: An algebraic approach to multi-sorted constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 183–198. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  5. Bulatov, A., Jeavons, P., Volkov, M.: Finite semigroups imposing tractable constraints. In: Gomez, G., Silva, P., Pin, J.-E. (eds.) Semigroups, Algorithms, Automata and Languages, pp. 313–329. WSP (2002)

    Google Scholar 

  6. Bulatov, A., Krokhin, A., Jeavons, P.: Constraint satisfaction problems and finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. Dalmau, V.: A new tractable class of constraint satisfaction problems. In: 6th Int. Symp on Artificial Intelligence and Mathematics (2000)

    Google Scholar 

  8. Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)

    Google Scholar 

  9. Feder, T.: Constraint satisfaction on finite groups with near subgroups. In: Electronic Colloquium on Computational Complexity (ECCC) (2005)

    Google Scholar 

  10. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. on Computing 28(1), 57–104 (1998)

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical Computer Science 200(1-2), 185–204 (1998)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Klíma, O., Tesson, P., Thérien, D.: Dichotomies in the complexity of solving systems of equations over finite semigroups. Theory of Computing Systems (2005)

    Google Scholar 

  14. Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. Submitted for publication (2004)

    Google Scholar 

  15. Pin, J.-É.: PG = BG, a success story. In: Fountain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages and Groups, pp. 33–47. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  16. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th ACM STOC, pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalmau, V., Gavaldà, R., Tesson, P., Thérien, D. (2005). Tractable Clones of Polynomials over Semigroups. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_17

Download citation

  • DOI: https://doi.org/10.1007/11564751_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)