Skip to main content

Beyond Hypertree Width: Decomposition Methods Without Decompositions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

The general intractability of the constraint satisfaction problem has motivated the study of restrictions on this problem that permit polynomial-time solvability. One major line of work has focused on structural restrictions, which arise from restricting the interaction among constraint scopes. In this paper, we engage in a mathematical investigation of generalized hypertree width, a structural measure that has up to recently eluded study. We obtain a number of computational results, including a simple proof of the tractability of CSP instances having bounded generalized hypertree width.

Keywords

  • Relational Structure
  • Constraint Satisfaction
  • Tree Decomposition
  • Winning Strategy
  • Relation Symbol

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, I., Gottlob, G., Grohe, M.: Hypertree-width and related hypergraph invariants (In preparation)

    Google Scholar 

  2. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  3. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  4. Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings of 43rd IEEE Symposium on Foundations of Computer Science, pp. 649–658 (2002)

    Google Scholar 

  5. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceedings of 18th IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 321–330 (2003); Extended version appears as Oxford University technical report PRG-RR–03-01

    Google Scholar 

  6. Chen, H., Dalmau, V.: From pebble games to tractability: An ambidextrous consistency algorithm for quantified constraint satisfaction (2005) (Manuscript)

    Google Scholar 

  7. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction and spread cut decomposition. To appear in IJCAI 2005 (2005)

    Google Scholar 

  8. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 310. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  9. Dechter, R., Pearl, J.: Tree clustering for constraint networks. In: Artificial Intelligence, pp. 353–366 (1989)

    Google Scholar 

  10. Freuder, E.: Complexity of k-tree structured constraint satisfaction problems. In: AAAI 1990 (1990)

    Google Scholar 

  11. Gottlob, G., Leone, L., Scarcello, F.: Hypertree decomposition and tractable queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Gottlob, G., Leone, L., Scarcello, F.: Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width. Journal of Computer and System Sciences 66, 775–808 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural csp decomposition methods. Artif. Intell. 124(2), 243–282 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. Journal of the ACM 43(3), 431–498 (2001)

    CrossRef  MathSciNet  Google Scholar 

  15. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. In: FOCS 2003, pp. 552–561 (2003)

    Google Scholar 

  16. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66(1), 57–89 (1994)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Gysssens, M., Paradaens, J.: A decomposition methodology for cyclic databases. In: Advances in Database Theory, vol. 2, pp. 85–122. Plenum Press, New York (1984)

    Google Scholar 

  18. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of Datalog: tools and a case study. Journal of Computer and System Sciences 51(1), 110–134 (1995)

    CrossRef  MathSciNet  Google Scholar 

  19. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences 61, 302–332 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  20. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction. In: Proceedings 17th National (US) Conference on Artificial Intellignece, AAAI 2000, pp. 175–181 (2000)

    Google Scholar 

  21. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, H., Dalmau, V. (2005). Beyond Hypertree Width: Decomposition Methods Without Decompositions. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_15

Download citation

  • DOI: https://doi.org/10.1007/11564751_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)