Skip to main content

A Linear-Logic Semantics for Constraint Handling Rules

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 3709)

Abstract

One of the attractive features of the Constraint Handling Rules (CHR) programming language is its declarative semantics where rules are read as formulae in first-order predicate logic. However, the more CHR is used as a general-purpose programming language, the more the limitations of that kind of declarative semantics in modelling change become apparent. We propose an alternative declarative semantics based on (intuitionistic) linear logic, establishing strong theorems on both soundness and completeness of the new declarative semantics w.r.t. operational semantics.

Keywords

  • Constraint Programming
  • Operational Semantic
  • Predicate Logic
  • Intuitionistic Logic
  • Linear Logic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11564751_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32050-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdennadher, S., Frühwirth, T.: Essentials of constraint programming. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  2. Abdennadher, S., Frühwirth, T., Meuss, H.: Confluence and semantics of constraint simplification rules. Constraints 4(2), 133–165 (1999)

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. Andreoli, J.-M., Pareschi, R.: LO and Behold! Concurrent Structured Processes. ACM SIGPLAN Notices, Proceedings OOPSLA/ECOOP 1990 25(10), 44–56 (1990)

    CrossRef  Google Scholar 

  4. Betz, H.: A Linear Logic Semantics for CHR, Master Thesis, University of Ulm (October 2004), www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/other/betzdipl.ps.gz

  5. Bozzano, M., Delzanno, G., Martelli, M.: A Linear Logic Specification of Chimera. In: Proceedings of the DYNAMICS 1997, a satellite workshop of ILPS 1997 (1997)

    Google Scholar 

  6. Danos, V., Di Cosmo, R.: Initiation to Linear Logic. Course notes (June 1992)

    Google Scholar 

  7. Fages, F.c., Ruet, P., Soliman, S.: Linear Concurrent Constraint Programming: Operational and Phase Semantics. Information and Computation 165(1), 14–41 (2001)

    MATH  CrossRef  MathSciNet  Google Scholar 

  8. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic Programming 37(1-3), 95–138 (1998)

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. Schrijvers, T., Frühwirth, T.: Optimal Union-Find in Constraint Handling Rules - Programming Pearl. Theory and Practice of Logic Programming (TPLP) (to appear 2005)

    Google Scholar 

  10. Girard, J.-Y.: Linear Logic: Its syntax and semantics. Theoretical Computer Science 50, 1–102 (1987)

    MATH  CrossRef  MathSciNet  Google Scholar 

  11. Harland, J., Pym, D., Winikoff, M.: Programming in Lygon: an overview. In: Algebraic Methodology and Software Technology (AMAST 1996), 5th International Conference, Proceedings, pp. 391–405 (1996)

    Google Scholar 

  12. Pfenning, F.: Linear Logic. Material for the homonymous course at Carnegie Mellon University (Draft of 2002)

    Google Scholar 

  13. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. Journal of the ACM 31(2), 245–281 (1984)

    MATH  CrossRef  Google Scholar 

  14. Wadler, P.: A taste of linear logic. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711. Springer, Heidelberg (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Betz, H., Frühwirth, T. (2005). A Linear-Logic Semantics for Constraint Handling Rules. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_13

Download citation

  • DOI: https://doi.org/10.1007/11564751_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)