Inferring Unions of the Pattern Languages by the Most Fitting Covers

  • Yen Kaow Ng
  • Takeshi Shinohara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3734)

Abstract

We are interested in learning unions of the pattern languages in the limit from positive data using strategies that guarantee some form of minimality during the learning process. It is known that for any class of languages with so-called finite elasticity, any learning strategy that finds a language that is minimal with respect to inclusion (MINL) ensures identification in the limit. We consider a learning strategy via another form of minimality — the minimality in the number of elements that are shorter than a specified length. A search for languages with this minimality is possible in many cases, and the search can be adapted to identify any class where every language in the class has a characteristic set within the class. We compare solutions using this strategy to those from MINL to illustrate how we may obtain solutions that fulfill both notions of minimality. Finally, we show how the results are relevant using some subclasses of the pattern languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arimura, H., Shinohara, T., Otsuki, S.: Finding minimal generalizations for unions of pattern languages and its application to inductive inference from positive data. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 649–660. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)MATHCrossRefGoogle Scholar
  5. 5.
    Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algorithm to find the best subsequence patterns. In: Morishita, S., Arikawa, S. (eds.) DS 2000. LNCS (LNAI), vol. 1967, pp. 141–154. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. International Journal Of Computer Mathematics 50, 147–163 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal of Computer and System Sciences 50, 53–63 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kobayashi, S., Yokomori, T.: Identifiability of subspaces and homomorphic images of zero-reversible languages. In: Li, M. (ed.) ALT 1997. LNCS (LNAI), vol. 1316, pp. 48–61. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity: Corrigendum to identification of unions. In: Valiant, L., Warmuth, M. (eds.) Proceedings of the Fourth Annual Workshop on Computational Learning Theory, p. 375. Morgan Kaufmann, San Francisco (1991)Google Scholar
  10. 10.
    Ng, Y.K., Ono, H., Shinohara, T.: Measuring over-generalization in the minimal multiple generalizations of biosequences. In: Proceedings of The Eighth Conference on Discovery Science (DS 2005) (to appear)Google Scholar
  11. 11.
    Ono, H., Ng, Y.K.: Best fitting fixed-length substring patterns for a set of strings. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 240–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Sato, M.: Inductive inference of formal languages. Bulletin of Informatics and Cybernetics 27(1), 85–106 (1995)MATHMathSciNetGoogle Scholar
  13. 13.
    Sato, M., Mukouchi, Y., Zheng, D.: Characteristic sets for unions of regular pattern languages and compactness. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 220–233. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Nakajima, R., Yonezawa, A., Nakata, I., Furukawa, K. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)Google Scholar
  15. 15.
    Shinohara, T., Arimura, H.: Inductive inference of unbounded unions of pattern languages from positive data. Theoretical Computer Science A 241, 191–209 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Uemura, J., Sato, M.: Compactness and learning of classes of unions of erasing regular pattern languages. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 293–307. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Wright, K.: Identification of unions of languages drawn from an identifiable class. In: Rivest, R., Haussler, D., Warmuth, M. (eds.) Proceedings of the Second Annual Workshop on Computational Learning Theory, pp. 328–333. Morgan Kaufmann, San Francisco (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yen Kaow Ng
    • 1
  • Takeshi Shinohara
    • 2
  1. 1.Graduate School of Computer Science and SystemsKyushu Institute of TechnologyIizukaJapan
  2. 2.Department of Artificial IntelligenceKyushu Institute of TechnologyIizukaJapan

Personalised recommendations