Skip to main content

Flat Acceleration in Symbolic Model Checking

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3707))

Abstract

Symbolic model checking provides partially effective verification procedures that can handle systems with an infinite state space. So-called “acceleration techniques” enhance the convergence of fixpoint computations by computing the transitive closure of some transitions. In this paper we develop a new framework for symbolic model checking with accelerations. We also propose and analyze new symbolic algorithms using accelerations to compute reachability sets.

This work was supported by the ACI Sécurité & Informatique (project Persée) funded by the French Ministry of Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward reachability analysis for verification of lossy channel systems. FMSD 25(1), 39–65 (2004)

    MATH  Google Scholar 

  2. Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric reasoning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Annichini, A., Bouajjani, A., Sighireanu, M.: TReX: A tool for reachability analysis of complex systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 368–372. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS 138(1), 3–34 (1995)

    Article  MATH  Google Scholar 

  5. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. alv, www.cs.ucsb.edu/~bultan/composite/

  7. babylon, www.ulb.ac.be/di/ssd/lvbegin/CST/

  8. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast Acceleration of Symbolic Transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Bardin, S., Finkel, A., Leroux, J.: FASTer acceleration of counter automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 576–590. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Boigelot, B., Bronne, L., Rassart, S.: Improved reachability analysis method for strongly linear hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 167–178. Springer, Heidelberg (1997)

    Google Scholar 

  12. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Bouajjani, A., Esparza, J., Finkel, A., Maler, O., Rossmanith, P., Willems, B., Wolper, P.: An efficient automata approach to some problems on context-free grammars. IPL 74(5–6), 221–227 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. TCS 221(1–2), 211–250 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model Checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic verification. In: Proc. LICS 2001, pp. 399–408 (2001)

    Google Scholar 

  17. Brand, D., Zafiropulo, P.: On communicating finite-state machines. JACM 30(2), 323–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bultan, T., Gerber, R., Pugh, W.: Symbolic model-checking of infinite state systems using Presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997)

    Google Scholar 

  19. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  20. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis, and Presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Cousot, P.: Abstract interpretation. ACM Comp. Surv. 28(2), 324–328 (1996)

    Article  Google Scholar 

  23. Darlot, C., Finkel, A., Van Begin, L.: About Fast and TReX accelerations. In: Proc. AVoCS 2004, ENTCS, vol. 128(6), pp. 87–103 (2005)

    Google Scholar 

  24. Delzanno, G., Raskin, J.-F., Van Begin, L.: Covering sharing trees: a compact data structure for parameterized verification. JSTTT 5(2–3), 268–297 (2004)

    Google Scholar 

  25. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fund. Informaticae 31(1), 13–25 (1997)

    MATH  MathSciNet  Google Scholar 

  26. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Finkel, A., Purushothaman Iyer, S., Sutre, G.: Well-abstracted transition systems: Application to FIFO automata. Inf. & Comp. 181(1), 1–31 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! TCS 256(1–2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fribourg, L., Olsén, H.: Proving Safety Properties of Infinite State Systems by Compilation into Presburger Arithmetic. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 213–227. Springer, Heidelberg (1997)

    Google Scholar 

  30. Fribourg, L.: Petri nets, flat languages and linear arithmetic. In: Alpuente, M. (ed.) Proc. WFLP 2000, pp. 344–365 (2000)

    Google Scholar 

  31. Ibarra, O.H., Su, J., Dang, Z., Bultan, T., Kemmerer, R.A.: Counter machines and verification problems. TCS 289(1), 165–189 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. TCS 256(1–2), 93–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. lash, www.montefiore.ulg.ac.be/~boigelot/research/lash/

  34. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 402–416. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Pachl, J.K.: Protocol description and analysis based on a state transition model with channel expressions. In: Proc. PSTV 1987, pp. 207–219 (1987)

    Google Scholar 

  37. Rybina, T., Voronkov, A.: Brain: Backward reachability analysis with integers. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 489–494. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  38. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P. (2005). Flat Acceleration in Symbolic Model Checking. In: Peled, D.A., Tsay, YK. (eds) Automated Technology for Verification and Analysis. ATVA 2005. Lecture Notes in Computer Science, vol 3707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562948_35

Download citation

  • DOI: https://doi.org/10.1007/11562948_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29209-8

  • Online ISBN: 978-3-540-31969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics