Skip to main content

Using the Structure of a Conceptual Network in Computing Semantic Relatedness

  • Conference paper
Natural Language Processing – IJCNLP 2005 (IJCNLP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3651))

Included in the following conference series:

Abstract

We present a new method for computing semantic relatedness of concepts. The method relies solely on the structure of a conceptual network and eliminates the need for performing additional corpus analysis. The network structure is employed to generate artificial conceptual glosses. They replace textual definitions proper written by humans and are processed by a dictionary based metric of semantic relatedness [1]. We implemented the metric on the basis of GermaNet, the German counterpart of WordNet, and evaluated the results on a German dataset of 57 word pairs rated by human subjects for their semantic relatedness. Our approach can be easily applied to compute semantic relatedness based on alternative conceptual networks, e.g. in the domain of life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In: Proceedings of the 5th Annual International Conference on Systems Documentation, Toronto, Ontario, Canada, pp. 24–26 (June 1986)

    Google Scholar 

  2. Hirst, G., Budanitsky, A.: Correcting real-word spelling errors by restoring lexical cohesion. Natural Language Engineering 11(1), 87–111 (2005)

    Article  Google Scholar 

  3. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet:Similarity –Measuring the relatedness of concepts. In: Intelligent Systems Demonstrations of the Nineteenth National Conference on Artificial Intelligence (AAAI-2004), San Jose, CA, July 25–29 (2004)

    Google Scholar 

  4. Rubenstein, H., Goodenough, J.: Contextual Correlates of Synonymy. Communications of the ACM 8(10), 627–633 (1965)

    Article  Google Scholar 

  5. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Language and Cognitive Processes 6(1), 1–28 (1991)

    Article  Google Scholar 

  6. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 265–283. MIT Press, Cambridge (1998)

    Google Scholar 

  7. Seco, N., Veale, T., Hayes, J.: An Intrinsic Information Content Metric for Semantic Similarity in WordNet. In: Proceedings of the 16th European Conference on Artificial Intelligence, Valencia, Spain, August 22–27, pp. 1089–1090 (2004)

    Google Scholar 

  8. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montréal, Canada, August 20-25, vol. 1, pp. 448–453 (1995)

    Google Scholar 

  9. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the 10th International Conference on Research in Computational Linguistics (ROCLING), Tapei, Taiwan (1997)

    Google Scholar 

  10. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning, San Francisco, Cal., pp. 296–304 (1998)

    Google Scholar 

  11. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Proceedings of the Fourth International Conference on Intelligent Text Processing and Computational Linguistics, Mexico City, Mexico, pp. 241–257 (2003)

    Google Scholar 

  12. Ekedahl, J., Golub, K.: Word Sense Disambiguation using WordNet and the Lesk algorithm (2004), http://www.cs.lth.se/EDA171/Reports/2004/jonaskoraljka.pdf

  13. Vaknin, S.: The definition of definitions (2005), http://samvak.tripod.com/define.html

  14. Kunze, C.: Lexikalisch-semantische Wortnetze. In: Carstensen, K.-U., Ebert, C., Endriss, C., Jekat, S., Klabunde, R., Langer, H. (eds.) Computerlinguistik und Sprachtechnologie. Eine Einführung, pp. 423–431. Spektrum Akademischer Verlag, Heidelberg (2004)

    Google Scholar 

  15. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Kunze, C., Lemnitzer, L.: GermaNet - representation, visualization, application. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC), Las Palmas, Canary Islands, Spain, May 29 - 31, pp. 1485–1491 (2002)

    Google Scholar 

  17. Banerjee, S., Pedersen, T.: Extended gloss overlap as a measure of semantic relatedness. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, France, August 28 – September 3 (1993)

    Google Scholar 

  18. Kilgarriff, A., Grefenstette, G.: Introduction to the special issue on the Web as a corpus. Computational Linguistics 29(3), 333–348 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurevych, I. (2005). Using the Structure of a Conceptual Network in Computing Semantic Relatedness. In: Dale, R., Wong, KF., Su, J., Kwong, O.Y. (eds) Natural Language Processing – IJCNLP 2005. IJCNLP 2005. Lecture Notes in Computer Science(), vol 3651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562214_67

Download citation

  • DOI: https://doi.org/10.1007/11562214_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29172-5

  • Online ISBN: 978-3-540-31724-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics