Skip to main content

Efficient Reduction for Wait-Free Termination Detection in a Crash-Prone Distributed System

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3724))

Abstract

We investigate the problem of detecting termination of a distributed computation in systems where processes can fail by crashing. Specifically, when the communication topology is fully connected, we describe a way to transform any termination detection algorithm \(\mathcal{A}\) that has been designed for a failure-free environment into a termination detection algorithm \(\mathcal{B}\) that can tolerate process crashes. Our transformation assumes the existence of a perfect failure detector. We show that a perfect failure detector is in fact necessary to solve the termination detection problem in a crash-prone distributed system even if at most one process can crash.

Let μ(n,M) and δ(n,M) denote the message complexity and detection latency, respectively, of \(\mathcal{A}\) when the system has n processes and the underlying computation exchanges M application messages. The message complexity of \(\mathcal{B}\) is at most O(n + μ(n,0)) messages per failure more than the message complexity of \(\mathcal{A}\). Also, its detection latency is at most O(δ(n,0)) per failure more than that of \(\mathcal{A}\). Furthermore, the overhead (that is, the amount of control data piggybacked) on an application message increases by only O(log n) bits per failure.

The fault-tolerant termination detection algorithm resulting from the transformation satisfies two desirable properties. First, it can tolerate failure of up to n–1 processes, that is, it is wait-free. Second, it does not impose any overhead on the fault-sensitive termination detection algorithm until one or more processes crash, that is, it is fault-reactive. Our transformation can be extended to arbitrary communication topologies provided process crashes do not partition the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dijkstra, E.W., Scholten, C.S.: Termination Detection for Diffusing Computations. Information Processing Letters (IPL) 11, 1–4 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Francez, N.: Distributed Termination. ACM Transactions on Programming Languages and Systems (TOPLAS) 2, 42–55 (1980)

    Article  MATH  Google Scholar 

  3. Rana, S.P.: A Distributed Solution of the Distributed Termination Problem. Information Processing Letters (IPL) 17, 43–46 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shavit, N., Francez, N.: A New Approach to Detection of Locally Indicative Stability. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 344–358. Springer, Heidelberg (1986)

    Google Scholar 

  5. Mattern, F.: Algorithms for Distributed Termination Detection. Distributed Computing (DC) 2, 161–175 (1987)

    Article  Google Scholar 

  6. Dijkstra, E.W.: Shmuel Safra’s Version of Termination Detection. EWD Manuscript 998 (1987), Available at http://www.cs.utexas.edu/users/EWD

  7. Mattern, F.: Global Quiescence Detection based on Credit Distribution and Recovery. Information Processing Letters (IPL) 30, 195–200 (1989)

    Article  MathSciNet  Google Scholar 

  8. Huang, S.T.: Detecting Termination of Distributed Computations by External Agents. In: Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 79–84 (1989)

    Google Scholar 

  9. Chandrasekaran, S., Venkatesan, S.: A Message-Optimal Algorithm for Distributed Termination Detection. Journal of Parallel and Distributed Computing (JPDC) 8, 245–252 (1990)

    Article  Google Scholar 

  10. Tel, G., Mattern, F.: The Derivation of Distributed Termination Detection Algorithms from Garbage Collection Schemes. ACM Transactions on Programming Languages and Systems (TOPLAS) 15, 1–35 (1993)

    Article  Google Scholar 

  11. Khokhar, A.A., Hambrusch, S.E., Kocalar, E.: Termination Detection in Data-Driven Parallel Computations/Applications. Journal of Parallel and Distributed Computing (JPDC) 63, 312–326 (2003)

    Article  MATH  Google Scholar 

  12. Mahapatra, N.R., Dutt, S.: An Efficient Delay-Optimal Distributed Termination Detection Algorithm. To Appear in Journal of Parallel and Distributed Computing, JPDC (2004)

    Google Scholar 

  13. Wang, X., Mayo, J.: A General Model for Detecting Termination in Dynamic Systems. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico (2004)

    Google Scholar 

  14. Mittal, N., Venkatesan, S., Peri, S.: Message-Optimal and Latency-Optimal Termination Detection Algorithms for Arbitrary Topologies. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 290–304. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Venkatesan, S.: Reliable Protocols for Distributed Termination Detection. IEEE Transactions on Reliability 38, 103–110 (1989)

    Article  Google Scholar 

  16. Lai, T.H., Wu, L.F.: An (N − 1)-Resilient Algorithm for Distributed Termination Detection. IEEE Transactions on Parallel and Distributed Systems (TPDS) 6, 63–78 (1995)

    Article  Google Scholar 

  17. Tseng, Y.C.: Detecting Termination by Weight-Throwing in a Faulty Distributed System. Journal of Parallel and Distributed Computing (JPDC) 25, 7–15 (1995)

    Article  Google Scholar 

  18. Shah, A., Toueg, S.: Distributed Snapshots in spite of Failures. Technical Report TR84-624, Department of Computer Science, Cornell University, Ithaca, NY (1984) (Revised February 1985)

    Google Scholar 

  19. Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States of Distributed Systems. ACM Transactions on Computer Systems 3, 63–75 (1985)

    Article  Google Scholar 

  20. Gärtner, F.C., Pleisch, S. (Im)Possibilities of Predicate Detection in Crash-Affected Systems. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 98–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Mittal, N., Freiling, F.C., Venkatesan, S., Penso, L.D.: Efficient Reductions for Wait-Free Termination Detection in Crash-Prone Systems. Technical Report AIB-2005-12, Department of Computer Science, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany (2005)

    Google Scholar 

  22. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Transactions on Computers 43, 1026–1038 (1994)

    Article  MATH  Google Scholar 

  23. Wu, L.F., Lai, T.H., Tseng, Y.C.: Consensus and Termination Detection in the Presence of Faulty Processes. In: Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan, pp. 267–274 (1992)

    Google Scholar 

  24. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM 43, 225–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Peri, S., Mittal, N.: On Termination Detection in an Asynchronous Distributed System. In: Proceedings of the ISCA International Conference on Parallel and Distributed Computing Systems (PDCS), California, pp. 209–215 (2004)

    Google Scholar 

  26. Larrea, M., Fernández, A., Arévalo, S.: On the Implementation of Unreliable Failure Detectors in Partially Synchronous Systems. IEEE Transactions on Computers 53, 815–828 (2004)

    Article  Google Scholar 

  27. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Synchrony. Journal of the ACM 35, 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  28. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov, P., Toueg, S.: The Weakest Failure Detector to Solve Certain Fundamental Problems in Distributed Computing. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), St. Johns, Newfoundland, Canada (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mittal, N., Freiling, F.C., Venkatesan, S., Penso, L.D. (2005). Efficient Reduction for Wait-Free Termination Detection in a Crash-Prone Distributed System. In: Fraigniaud, P. (eds) Distributed Computing. DISC 2005. Lecture Notes in Computer Science, vol 3724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561927_9

Download citation

  • DOI: https://doi.org/10.1007/11561927_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29163-3

  • Online ISBN: 978-3-540-32075-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics