Small Stretch Spanners on Dynamic Graphs

  • Giorgio Ausiello
  • Paolo G. Franciosa
  • Giuseppe F. Italiano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


We present fully dynamic algorithms for maintaining 3- and 5-spanners of undirected graphs. For unweighted graphs we maintain a 3- or 5-spanner under insertions and deletions of edges in O(n) amortized time per operation over a sequence of Ω(n) updates. The maintained 3-spanner (resp., 5-spanner) has O(n 3/2) edges (resp., O(n 4/3) edges), which is known to be optimal. On weighted graphs with d different edge cost values, we maintain a 3- or 5-spanner in O(n) amortized time per operation over a sequence of Ω(d Open image in new window n) updates. The maintained 3-spanner (resp., 5-spanner) has O(d Open image in new window n 3/2) edges (resp., O(d Open image in new window n 4/3) edges). The same approach can be extended to graphs with real-valued edge costs in the range [1,C]. All our algorithms are deterministic and are substantially faster than recomputing a spanner from scratch after each update.


Weighted Graph Free Edge Dynamic Graph Edge Cost Edge Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Awerbuch, B.: Complexity of network synchronization. Journal of the ACM 32(4), 804–823 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bandelt, H.-J., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7, 309–343 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baswana, S., Sen, S.: A simple linear time algorithm for computing (2k - 1)-spanner of O(n 1 + 1/k) size for weighted graphs. In: Proc. 30th ICALP, pp. 384–396Google Scholar
  5. 5.
    Cai, L.: NP-completeness of minimum spanner problems. Discr. Appl. Math. and Comb. Oper. Research and Comp. Sci. 48(2), 187–194 (1994)zbMATHGoogle Scholar
  6. 6.
    Cai, L., Keil, J.M.: Degree-bounded spanners. Parallel Processing Letters 3, 457–468 (1993)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chew, L.P.: There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences 39(2), 205–219 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  9. 9.
    Das, G., Joseph, D.: Which triangulations approximate the complete graph. In: Proc. Int. Symp. on Optimal Algorithms, pp. 168–192Google Scholar
  10. 10.
    Dobkin, D., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom. 5, 399–407 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Liestman, A.L., Shermer, T.: Grid spanners. Networks 23, 122–133 (1993)Google Scholar
  13. 13.
    Peleg, D., Shäffer, A.: Graph spanners. J. of Graph Theory 13, 99–116 (1989)zbMATHCrossRefGoogle Scholar
  14. 14.
    Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM Journal on Computing 18(4), 740–747 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Richards, D., Liestman, A.L.: Degree-constrained pyramid spanners. Journal of Parallel and Distributed Computing 25, 1–6 (1995)CrossRefGoogle Scholar
  16. 16.
    Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  17. 17.
    Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected graphs. In: Proc. FOCS 2004, pp. 499–508 (2004)Google Scholar
  18. 18.
    Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Wenger, R.: Extremal graphs with no C 4’s, C 6’s, or C 10’s. J. Combin. Theory Ser. B 52, 113–116 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zwick, U.: Personal communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giorgio Ausiello
    • 1
  • Paolo G. Franciosa
    • 2
  • Giuseppe F. Italiano
    • 3
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Dipartimento di Statistica, Probabilità e Statistiche ApplicateUniversità di Roma “La Sapienza”RomaItaly
  3. 3.Dipartimento di Informatica, Sistemi e ProduzioneUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations