Advertisement

Approximating the 2-Interval Pattern Problem

  • Maxime Crochemore
  • Danny Hermelin
  • Gad M. Landau
  • Stéphane Vialette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)

Abstract

We address the problem of approximating the 2-Interval Pattern problem over its various models and restrictions. This problem, which is motivated by RNA secondary structure prediction, asks to find a maximum cardinality subset of a 2-interval set with respect to some prespecified model. For each such model, we give varying approximation quality depending on the different possible restrictions imposed on the input 2-interval set.

Keywords

Approximation Algorithm Pairwise Disjoint Interval Graph Schematic Description Discrete Apply Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Halldorsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling spit intervals. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 732–741 (2002)Google Scholar
  3. 3.
    Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval pattern problem. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 311–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Dagan, I., Golumbic, M.C., Pinter, R.Y.: Trapezoid graphs and their coloring. Discrete Applied Mathematics 21, 35–46 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations: Geometry and algorithms. Discrete Applied Mathematics 74, 13–32 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of a chordal graph. SIAM Journal on Computing 1, 180–187 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  8. 8.
    Ieong, S., Kao, M.Y., Lam, T.W., Sung, W.K., Yiu, S.M.: Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs. In: Proceedings of the 2nd Symposium on Bioinformatics and Bioengineering (BIBE 2002), pp. 183–190 (2002)Google Scholar
  9. 9.
    Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy based models. Journal of Computational Biology 7, 409–428 (2000)CrossRefGoogle Scholar
  10. 10.
    McKee, T.A., McMorris, F.R.: Topics in intersection graph theory. SIAM monographs on discrete mathematics and applications (1999)Google Scholar
  11. 11.
    Vialette, S.: On the computational complexity of 2-interval pattern matching problems. Theoretical Computer Science 312, 335–379 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maxime Crochemore
    • 1
    • 2
  • Danny Hermelin
    • 3
  • Gad M. Landau
    • 3
    • 4
  • Stéphane Vialette
    • 5
  1. 1.Institut Gaspard-MongeUniversité de Marne-la-ValléeFrance
  2. 2.Department of Computer ScienceKing’s CollageLondonUK
  3. 3.Department of Computer ScienceUniversity of HaifaIsrael
  4. 4.Department of Computer and Information SciencePolytechnic UniversityUSA
  5. 5.Laboratoire de Recherche en Informatique (LRI)Université Paris-SudFrance

Personalised recommendations