A 2-Approximation Algorithm for Sorting by Prefix Reversals

  • Johannes Fischer
  • Simon W. Ginzinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


Sorting by Prefix Reversals, also known as Pancake Flipping, is the problem of transforming a given permutation into the identity permutation, where the only allowed operations are reversals of a prefix of the permutation. The problem complexity is still unknown, and no algorithm with an approximation ratio better than 3 is known. We present the first polynomial-time 2-approximation algorithm to solve this problem. Empirical tests suggest that the average performance is in fact better than 2.


Approximation Ratio Identity Permutation Blue Edge Breakpoint Graph Reversal Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Pevzner, P.A.: Genome Rearrangements and Sorting by Reversals. SIAM J. on Computing 25(2), 272–289 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bafna, V., Pevzner, P.A.: Sorting by Transpositions. SIAM J. on Discrete Mathematics 11(2), 224–240 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-Approximation Algorithm for Sorting by Reversals. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 200–210. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Caprara, A.: Sorting Permutations by Reversals and Eulerian Cycle Decompositions. SIAM J. on Discrete Mathematics 12(1), 91–110 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen, D.S., Blum, M.: On the Problem of Sorting Burnt Pancakes. Discrete Applied Mathematics 61, 105–120 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dias, Z., Meidanis, J.: Sorting by Prefix Transpositions. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Gates, W.H., Papadimitriou, C.H.: Bounds for Sorting by Prefix Reversals. Discrete Mathematics 27, 47–57 (1979)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hannehalli, S., Pevzner, P.: TO CUT ... OR NOT TO CUT (Applications of Comparative Physical Maps in Molecular Evolution). In: Proceedings of the 7th ACM Symposium on Discrete Algorithms (SODA 1996), pp. 304–313 (1996)Google Scholar
  9. 9.
    Hannenhalli, S., Pevzner, P.A.: Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals. J. of the ACM 46(1), 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hartman, T., Shamir, R.: A Simpler 1.5-Approximation Algorithms for Sorting by Transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Heydari, M.H., Sudborough, I.H.: On the Diameter of the Pancake Network. J. of Algorithms 25, 67–94 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Heydari, M.H.: The Pancake Problem. PhD-thesis, University of Wisconsin at Whitewater (1993)Google Scholar
  13. 13.
    Kececioglu, J., Sankoff, D.: Efficient Bounds for Oriented Chromosome Inversion Distance. In: CPM 1994. LNCS, vol. 807, pp. 307–325. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Kececioglu, J., Sankoff, D.: Exact and Approximation Algorithms for Sorting by Reversals, with Application to Genome Rearrangements. Algorithmica 13, 180–210 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Johannes Fischer
    • 1
  • Simon W. Ginzinger
    • 1
  1. 1.LFE Bioinformatik und Praktische InformatikLudwig-Maximilians-Universität MünchenMünchen

Personalised recommendations