Minimal Interval Completions

  • Pinar Heggernes
  • Karol Suchan
  • Ioan Todinca
  • Yngve Villanger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


We study the problem of adding edges to an arbitrary graph so that the resulting graph is an interval graph. Our objective is to add an inclusion minimal set of edges, which means that no proper subset of the added edges can result in an interval graph when added to the original graph. We give a polynomial time algorithm to obtain a minimal interval completion of an arbitrary graph, thereby resolving the complexity of this problem.


Maximal Clique Interval Graph Input Graph Chordal Graph Topological Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berry, A., Heggernes, P., Villanger, Y.: A vertex incremental approach for dynamically maintaining chordal graphs. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 47–57. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. on Computing 31(1), 212–232 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co., New York (1978)Google Scholar
  4. 4.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canadian J. Math. 16, 539–548 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)zbMATHGoogle Scholar
  6. 6.
    Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Bio. 2(1), 139–152 (1995)CrossRefGoogle Scholar
  7. 7.
    Gustedt, J.: On the pathwidth of chordal graphs. Discrete Applied Mathematics 45(3), 233–248 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Heggernes, P.: Minimal triangulations of graphs: A survey. To appear Discrete Math.Google Scholar
  9. 9.
    Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal interval completions. Technical Report RR2005-04, LIFO - University of Orléans (2005),
  10. 10.
    Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theor. Comput. Sci. 175, 309–335 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Disc. Appl. Math. 79, 171–188 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pinar Heggernes
    • 1
  • Karol Suchan
    • 2
  • Ioan Todinca
    • 2
  • Yngve Villanger
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.LIFOUniversité d’OrleansOrleansFrance

Personalised recommendations