Convex Hull and Voronoi Diagram of Additively Weighted Points

  • Jean-Daniel Boissonnat
  • Christophe Delage
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


We provide a complete description of dynamic algorithms for constructing convex hulls and Voronoi diagrams of additively weighted points of \({\mathbb R}^{d}\). We present simple algorithms and provide a description of the predicates. The algorithms have been implemented in \({\mathbb R}^{3}\) and experimental results are reported. Our implementation follows the CGAL design and, in particular, is made both robust and efficient through the use of filtered exact arithmetic.


Convex Hull Voronoi Diagram Voronoi Cell Dynamic Algorithm Incremental Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boissonnat, J.D., Cérézo, A., Devillers, O., Duquesne, J., Yvinec, M.: An algorithm for constructing the convex hull of a set of spheres in dimension d. Comput. Geom. Theory Appl. 6, 123–130 (1996)zbMATHGoogle Scholar
  2. 2.
    Boissonnat, J.D., Karavelas, M.: On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 305–312 (2003)Google Scholar
  3. 3.
    Aurenhammer, F., Imai, H.: Geometric relations among Voronoi diagrams. Geom. Dedicata 27, 65–75 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Karavelas, M., Yvinec, M.: Dynamic additively weighted voronoi diagrams in 2d. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 586–598. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Kim, D.S., Kim, D., Sugihara, K.: Updating the topology of the dynamic voronoi diagram for spheres in euclidean d-dimensional space. Computer-Aided Design 18, 541–562 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Will, H.-M.: Fast and efficient computation of additively weighted Voronoi cells for applications in molecular biology. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 310–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Kim, D.S., Cho, Y., Kim, D., Bhak, J., Lee, S.H.: Euclidean voronoi diagram of 3d spheres and applications to protein structure analysis. In: Sugihara, K. (ed.) 1st International Symposium on Voronoi Diagrams in Science and Engineering (2004)Google Scholar
  8. 8.
    Karavelas, M.I., Emiris, I.Z.: Root comparison techniques applied to computing the additively weighted Voronoi diagram. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 320–329 (2003)Google Scholar
  9. 9.
    Anton, F.: Voronoi diagrams of semi-algebraic sets. Ph.d. thesis, University of British Columbia (2004)Google Scholar
  10. 10.
    Karavelas, M.I., Emiris, I.Z.: Predicates for the planar additively weighted Voronoi diagram. Technical Report ECG-TR-122201-01, INRIA Sophia-Antipolis (2002)Google Scholar
  11. 11.
    The CGAL Manual, Release 3.1 (2004)Google Scholar
  12. 12.
    Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. In: SIGGRAPH (2005)Google Scholar
  13. 13.
    Boissonnat, J.D., Oudot, S.: Provably good surface sampling and approximation. In: Proc. 1st Symp. on Geometry Processing, pp. 9–18 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jean-Daniel Boissonnat
    • 1
  • Christophe Delage
    • 1
  1. 1.INRIA Sophia-AntipolisSophia-AntipolisFrance

Personalised recommendations