Unbalanced Graph Cuts

  • Ara Hayrapetyan
  • David Kempe
  • Martin Pál
  • Zoya Svitkina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


We introduce the Minimum-size bounded-capacity cut (MinSBCC) problem, in which we are given a graph with an identified source and seek to find a cut minimizing the number of nodes on the source side, subject to the constraint that its capacity not exceed a prescribed bound B. Besides being of interest in the study of graph cuts, this problem arises in many practical settings, such as in epidemiology, disaster control, military containment, as well as finding dense subgraphs and communities in graphs.

In general, the MinSBCC problem is NP-complete. We present an efficient \((\frac{1}{{\rm \lambda}},\frac{1}{1-{\rm \lambda}})\)-bicriteria approximation algorithm for any 0 < λ < 1; that is, the algorithm finds a cut of capacity at most \(\frac{1}{{\rm \lambda}}B\), leaving at most \(\frac{1}{1-{\rm \lambda}}\) times more vertices on the source side than the optimal solution with capacity B. In fact, the algorithm’s solution either violates the budget constraint, or exceeds the optimal number of source-side nodes, but not both. For graphs of bounded treewidth, we show that the problem with unit weight nodes can be solved optimally in polynomial time, and when the nodes have weights, approximated arbitrarily well by a PTAS.


Tree Decomposition Node Weight Source Side Dense Subgraph Edge Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  2. 2.
    Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: STOC (2004)Google Scholar
  3. 3.
    Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. Journal of Algorithms, 34 (2000)Google Scholar
  4. 4.
    Bailey, N.: The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press, New York (1975)zbMATHGoogle Scholar
  5. 5.
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. on Computing 25, 1305–1317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher (2004) (Submitted)Google Scholar
  7. 7.
    Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)CrossRefGoogle Scholar
  8. 8.
    Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structure of social contact networks and their impact on epidemics. AMS-DIMACS Special Volume on EpidemiologyGoogle Scholar
  9. 9.
    Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: SODA (2004)Google Scholar
  10. 10.
    Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. In: STOC (1993)Google Scholar
  11. 11.
    Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum bisection. SIAM J. on Computing 31, 1090–1118 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Feige, U., Krauthgamer, R., Nissim, K.: On cutting a few vertices from a graph. Discrete Applied Mathematics 127, 643–649 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Feige, U., Seltser, M.: On the densest k-subgraph problem. Technical report, The Weizmann Institute, Rehovot (1997)Google Scholar
  14. 14.
    Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization of the web and identification of communities. IEEE Computer, 35 (2002)Google Scholar
  15. 15.
    Flake, G., Tarjan, R., Tsioutsiouliklis, K.: Graph clustering techniques based on minimum cut trees. Technical Report 2002-06, NEC, Princeton (2002)Google Scholar
  16. 16.
    Ford, L., Fulkerson, D.: Maximal flow through a network. Can. J. Math. (1956)Google Scholar
  17. 17.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. on Computing 18, 30–55 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. on Computing (1996)Google Scholar
  19. 19.
    Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2005)Google Scholar
  20. 20.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. In: WWW (1999)Google Scholar
  21. 21.
    Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehard and Winston (1976)zbMATHGoogle Scholar
  22. 22.
    Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM, 46 (1999)Google Scholar
  23. 23.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA (2004)Google Scholar
  24. 24.
    Shmoys, D.: Cut problems and their application to divide-and-conquer. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard problems, pp. 192–235. PWD Publishing (1995)Google Scholar
  25. 25.
    Svitkina, Z., Tardos, E.: Min-max multiway cut. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 207–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ara Hayrapetyan
    • 1
  • David Kempe
    • 2
  • Martin Pál
    • 3
  • Zoya Svitkina
    • 1
  1. 1.Dept. of Computer ScienceCornell University 
  2. 2.Dept. of Computer ScienceUniversity of Southern California 
  3. 3.DIMACS CenterRutgers University 

Personalised recommendations