Exacus: Efficient and Exact Algorithms for Curves and Surfaces

  • Eric Berberich
  • Arno Eigenwillig
  • Michael Hemmer
  • Susan Hert
  • Lutz Kettner
  • Kurt Mehlhorn
  • Joachim Reichel
  • Susanne Schmitt
  • Elmar Schömer
  • Nicola Wolpert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


We present the first release of the Exacus C++ libraries. We aim for systematic support of non-linear geometry in software libraries. Our goals are efficiency, correctness, completeness, clarity of the design, modularity, flexibility, and ease of use. We present the generic design and structure of the libraries, which currently compute arrangements of curves and curve segments of low algebraic degree, and boolean operations on polygons bounded by such segments.


Exact Algorithm Algebraic Number Number Type Curve Segment Cylindrical Algebraic Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1998)Google Scholar
  2. 2.
    Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28(9), 643–647 (1979)CrossRefGoogle Scholar
  3. 3.
    Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Mehlhorn, K., Schömer, E.: A computational basis for conic arcs and boolean operations on conic polygons. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 174–186. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, complete and efficient implementation for computing planar maps of quadric intersection curves. In: Proc. 21th Annu. Sympos. Comput. Geom., pp. 99–106 (2005)Google Scholar
  5. 5.
    Brönnimann, H., Kettner, L., Schirra, S., Veltkamp, R.: Applications of the generic programming paradigm in the design of CGAL. In: Jazayeri, M., Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766, pp. 206–217. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Matrix Eigensystem Routines - EISPACK Guide. LNCS, vol. 6, pp. 134–183. Springer, Heidelberg (1975); Reprinted with corrections in: Caviness, B.F., Johnson, J. R. (eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 85–121. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Collins, G.E., Akritas, A.-G.: Polynomial real root isolation using Descartes’ rule of sign. In: SYMSAC, pp. 272–275 (1976)Google Scholar
  8. 8.
    Culver, T., Keyser, J., Foskey, M., Krishnan, S., Manocha, D.: Esolid - a system for exact boundary evaluation. Computer-Aided Design (Special Issue on Solid Modeling) 36 (2003)Google Scholar
  9. 9.
    Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A Descartes algorithm for polynomials with bit-stream coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–149. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  10. 10.
    Eigenwillig, A., Kettner, L., Schömer, E., Wolpert, N.: Complete, exact, and efficient computations with cubic curves. In: Proc. 20th Annu. Sympos. Comput. Geom., pp. 409–418 (2004); Accepted for Computational Geometry: Theory and ApplicationsGoogle Scholar
  11. 11.
    Emiris, I.Z., Kakargias, A., Pion, S., Teillaud, M., Tsigaridas, E.P.: Towards and open curved kernel. In: Proc. 20th Annu. Sympos. Comput. Geom., pp. 438–446 (2004)Google Scholar
  12. 12.
    Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.: On the design of CGAL, the computational geometry algorithms library. Softw. – Pract. and Exp. 30(11), 1167–1202 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Flato, E., Halperin, D., Hanniel, I., Nechushtan, O., Ezra, E.: The design and implementation of planar maps in CGAL. ACM Journal of Experimental Algorithmics 5 (2000); Special Issue, selected papers of the Workshop on Algorithm Engineering (WAE)Google Scholar
  14. 14.
    Fogel, E., Halperin, D., Wein, R., Pion, S., Teillaud, M., Emiris, I., Kakargias, A., Tsigaridas, E., Berberich, E., Eigenwillig, A., Hemmer, M., Kettner, L., Mehlhorn, K., Schömer, E., Wolpert, N.: Preliminary empirical comparison of the performance of constructing arrangements of curved arcs. Technical Report ECG-TR-361200-01, Tel-Aviv University, INRIA Sophia-Antipolis, MPI Saarbrücken (2004)Google Scholar
  15. 15.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)zbMATHCrossRefGoogle Scholar
  16. 16.
    Goldman, R.N., Sederberg, T.W., Anderson, D.C.: Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves. CAGD 1, 327–356 (1984)zbMATHGoogle Scholar
  17. 17.
    Granlund, T.: GNU MP, The GNU Multiple Precision Arithmetic Library, version 2.0.2 (1996)Google Scholar
  18. 18.
    Hemmer, M., Kettner, L., Schömer, E.: Effects of a modular filter on geometric applications. Technical Report ECG-TR-363111-01, MPI Saarbrücken (2004)Google Scholar
  19. 19.
    Hert, S., Hoffmann, M., Kettner, L., Pion, S., Seel, M.: An adaptable and extensible geometry kernel. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 76–91. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Hou, X., Wang, D.: Subresultants with the Bézout matrix. In: Proc. Fourth Asian Symp. on Computer Math (ASCM 2000), pp. 19–28. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  21. 21.
    Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: Proc. 15th Annu. Sympos. Comput. Geom., pp. 351–359 (1999)Google Scholar
  22. 22.
    Kettner, L., Näher, S.: Two computational geometry libraries: LEDA and CGAL. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Disc. and Comput. Geom, 2nd edn., pp. 1435–1463. CRC Press, Boca Raton (2004)Google Scholar
  23. 23.
    Keyser, J., Culver, T., Manocha, D., Krishnan, S.: MAPC: A library for efficient and exact manipulation of algebraic points and curves. In: Proc. 15th Annu. Sympos. Comput. Geom., pp. 360–369 (1999)Google Scholar
  24. 24.
    Loos, R.: Generalized polynomial remainder sequences. In: Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, 2nd edn., pp. 115–137. Springer, Heidelberg (1983)Google Scholar
  25. 25.
    Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)Google Scholar
  26. 26.
    Rote, G.: Division-free algorithms for the determinant and the pfaffian: algebraic and combinatorial approaches. In: Alt, H. (ed.) Computational Discrete Mathematics. LNCS, vol. 2122, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial’s real roots. J. Comput. Applied Math. 162, 33–50 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Schmitt, S.: The diamond operator – implementation of exact real algebraic numbers. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 355–366. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  29. 29.
    Seidel, R., Wolpert, N.: On the exact computation of the topology of real algebraic curves. In: Proc. 21th Annual Symposium on Computational Geometry, pp. 107–115 (2005)Google Scholar
  30. 30.
    Wein, R.: High level filtering for arrangements of conic arcs. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 884–895. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Wolpert, N.: Jacobi curves: Computing the exact topology of arrangements of non-singular algebraic curves. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 532–543. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eric Berberich
    • 1
  • Arno Eigenwillig
    • 1
  • Michael Hemmer
    • 2
  • Susan Hert
    • 3
  • Lutz Kettner
    • 1
  • Kurt Mehlhorn
    • 1
  • Joachim Reichel
    • 1
  • Susanne Schmitt
    • 1
  • Elmar Schömer
    • 2
  • Nicola Wolpert
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Johannes-Gutenberg-Universität MainzGermany
  3. 3.Serials SolutionsSeattleUSA

Personalised recommendations