Delineating Boundaries for Imprecise Regions

  • Iris Reinbacher
  • Marc Benkert
  • Marc van Kreveld
  • Joseph S. B. Mitchell
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


In geographic information retrieval, queries often use names of geographic regions that do not have a well-defined boundary, such as “Southern France.” We provide two classes of algorithms for the problem of computing reasonable boundaries of such regions, based on evidence of given data points that are deemed likely to lie either inside or outside the region. Our problem formulation leads to a number of problems related to red-blue point separation and minimum-perimeter polygons, many of which we solve algorithmically. We give experimental results from our implementation and a comparison of the two approaches.


Simple Polygon Blue Point Base Edge Reasonable Boundary Green Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arampatzis, A., van Kreveld, M., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H., Sanderson, M.: Web-based delineation of imprecise regions (Manuscript 2005)Google Scholar
  2. 2.
    Arkin, E.M., Mitchell, J.S.B., Piatko, C.D.: Minimum-link watchman tours. Inform. Process. Lett. 86(4), 203–207 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arora, S., Chang, K.: Approximation schemes for degree-restricted MST and red-blue separation problem. Algorithmica 40(3), 189–210 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd IEEE Sympos. Found. Comput. Sci., pp. 617–626 (2002)Google Scholar
  5. 5.
    Chan, T.M.: Low-dimensional linear programming with violations. In: Proc. 43rd IEEE Symp. on Foundations of Comput. Sci (FOCS 2002), pp. 570–579 (2002)Google Scholar
  6. 6.
    Eades, P., Rappaport, D.: The complexity of computing minimum separating polygons. Pattern Recogn. Lett. 14, 715–718 (1993)zbMATHCrossRefGoogle Scholar
  7. 7.
    Edelsbrunner, H.: Algorithms in Combinatorial Geometry. In: EATCS Monographs on Theoretical Computer Science, vol. 10. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jones, C., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M., Weibel, R.: Spatial information retrieval and geographical ontologies – an overview of the SPIRIT project. In: Proc. 25th Annu. Int. Conf. on Research and Development in Information Retrieval (SIGIR 2002), pp. 387–388 (2002)Google Scholar
  10. 10.
    Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28, 1298–1309 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Morimoto, Y., Aono, M., Houle, M., McCurley, K.: Extracting spatial knowledge from the Web. In: Proc. IEEE Sympos. on Applications and the Internet (SAINT 2003), pp. 326–333 (2003)Google Scholar
  12. 12.
    O’Sullivan, D., Unwin, D.J.: Geographic Information Analysis. John Wiley & Sons Ltd., Chichester (2003)Google Scholar
  13. 13.
    Reinbacher, I., Benkert, M., van Kreveld, M., Mitchell, J.S., Wolff, A.: Delineating boundaries for imprecise regions. Tech. Rep. UU–CS–2005–026, Utrecht UniversityGoogle Scholar
  14. 14.
    Seara, C.: On Geometric Separability. PhD thesis, UPC Barcelona (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Iris Reinbacher
    • 1
  • Marc Benkert
    • 2
  • Marc van Kreveld
    • 1
  • Joseph S. B. Mitchell
    • 3
  • Alexander Wolff
    • 2
  1. 1.Institute of Information and Computing SciencesUtrecht University 
  2. 2.Dept. of Comp. ScienceKarlsruhe University 
  3. 3.Department of Applied Mathematics and StatisticsState University of New York at Stony Brook 

Personalised recommendations