Finding Shortest Non-separating and Non-contractible Cycles for Topologically Embedded Graphs

  • Sergio Cabello
  • Bojan Mohar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3669)


We present an algorithm for finding shortest surface non-separating cycles in graphs with given edge-lengths that are embedded on surfaces. The time complexity is O(g 3/2 V 3/2log V + g 5/2 V 1/2), where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V 1/3 − ε ), this represents a considerable improvement over previous results by Thomassen, and Erickson and Har-Peled. We also give algorithms to find a shortest non-contractible cycle in O(g \(^{O({\it g})}\) V 3/2) time, improving previous results for fixed genus.

This result can be applied for computing the (non-separating) face-width of embedded graphs. Using similar ideas we provide the first near-linear running time algorithm for computing the face-width of a graph embedded on the projective plane, and an algorithm to find the face-width of embedded toroidal graphs in O(V 5/4log V) time.


Planar Graph Fundamental Group Homology Group Short Cycle Embed Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albertson, M.O., Hutchinson, J.P.: On the independence ratio of a graph. J. Graph Theory 2, 1–8 (1978)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dey, T.K., Guha, S.: Transforming curves on surfaces. J. Comput. Syst. Sci. 58, 297–325 (1999); Preliminary version in FOCS 1995zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dey, T.K., Schipper, H.: A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discrete Comput. Geom. 14, 93–110 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Djidjev, H.: On-line algorithms for shortest path problems on planar digraphs. In: D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 151–165. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    de Verdière, É.C.: Shortening of curves and decomposition of surfaces. PhD thesis, University Paris 7 (December 2003)Google Scholar
  6. 6.
    de Verdière, É.C., Lazarus, F.: Optimal system of loops on an orientable surface. In: FOCS 2002, pp. 627–636 (2002); To appear in Discrete Comput. Geom.Google Scholar
  7. 7.
    de Verdière, É.C., Lazarus, F.: Optimal pants decompositions and shortest homotopic cycles on an orientable surface. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 478–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Eppstein, D.: Dynamic generators of topologically embedded graphs. In: SODA 2003, pp. 599–608 (2003)Google Scholar
  9. 9.
    Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete Comput. Geom. 31, 37–59 (2004); Preliminary version in SoCG 2002zbMATHMathSciNetGoogle Scholar
  10. 10.
    Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: SODA 2005 (2005)Google Scholar
  11. 11.
    Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. In: FOCS 2001, pp. 232–242 (2001)Google Scholar
  12. 12.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987); Preliminary version in FOCS 1984CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)Google Scholar
  14. 14.
    Henzinger, M., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA 2005 (2005)Google Scholar
  16. 16.
    Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygonal schema of an orientable triangulated surface. In: SOCG 2001, pp. 80–89 (2001)Google Scholar
  17. 17.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press, Baltimore (2001)zbMATHGoogle Scholar
  18. 18.
    Schrijver, A.: Disjoint circuits of prescribed homotopies in a graph on a compact surface. J. Combin. Theory Ser. B 51, 127–159 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schrijver, A.: Paths in graphs and curves on surfaces. In: First European Congress of Mathematics, Progr. Math., vol. II, 120, pp. 381–406. Birkhäuser, Basel (1994)Google Scholar
  20. 20.
    Thomassen, C.: Embeddings of graphs with no short noncontractible cycles. J. Combin. Theory, Ser. B 48, 155–177 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vegter, G., Yap, C.K.: Computational complexity of combinatorial surfaces. In: SOCG 1990, pp. 102–111 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sergio Cabello
    • 1
  • Bojan Mohar
    • 2
  1. 1.Department of MathematicsInstitute for Mathematics, Physics and MechanicsSlovenia
  2. 2.Department of Mathematics, Faculty of Mathematics and PhysicsUniversity of LjubljanaSlovenia

Personalised recommendations