Impact of Neighbor Selection on Performance and Resilience of Structured P2P Networks

  • Byung-Gon Chun
  • Ben Y. Zhao
  • John D. Kubiatowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3640)


Recent work has shown that intelligent neighbor selection during construction can significantly enhance the performance of peer-to-peer overlay networks. While its impact on performance has been recognized, few have examined the impact of neighbor selection on network resilience. In this paper, we study the impact with a generalized cost model for overlay construction that takes into consideration different types of heterogeneity, such as node capacity and network proximity. Our simulation results show that the resulting performance improvement comes at the cost of static resilience against targeted attacks and adding random redundancy can improve the resilience significantly.


Overlay Network Neighbor Selection Sequential Neighbor Primary Link Overlay Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–381 (2000)CrossRefGoogle Scholar
  2. 2.
    Castro, M., Druschel, P., Ganesh, A., Rowstron, A.: Secure routing for structured peer-to-peer overlay networks. In: Proc. of USENIX OSDI (December 2002)Google Scholar
  3. 3.
    Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Exploiting network proximity in peer-to-peer overlay networks, technical report msr-tr-2002-82 (2002)Google Scholar
  4. 4.
    Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making gnutella-like p2p systems scalable. In: Proc. of ACM SIGCOMM (2003)Google Scholar
  5. 5.
    Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: Planetlab: An overlay testbed for broad-coverage services. In: ACM Computer Communication Review (July 2003)Google Scholar
  6. 6.
    Chun, B.-G., Fonseca, R., Stoica, I., Kubiatowicz, J.: Characterizing selfishly constructed overlay routing networks. In: Proceedings of IEEE INFOCOM (2004)Google Scholar
  7. 7.
    Gummadi, K.P., Gummadi, R., Gribble, S.D., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of dht routing geometry on resilience and proximity. In: Proc. of ACM SIGCOMM (2003)Google Scholar
  8. 8.
    Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing in structured p2p systems. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Proc. of SIGCOMM. ACM, New York (2001)Google Scholar
  10. 10.
    Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay construction and server selection. In: Proc. of IEEE INFOCOM (2002)Google Scholar
  11. 11.
    Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. In: Proc. of the USENIX Annual Technical Conference (June 2004)Google Scholar
  12. 12.
    Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer file sharing systems. In: Proc. of MMCN (2002)Google Scholar
  14. 14.
    Singh, A., Castro, M., Druschel, P., Rowstron, A.: Defending against eclipse attacks on overlay networks. In: Proc. of the ACM SIGOPS European Workshop (September 2004)Google Scholar
  15. 15.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proc. of SIGCOMM. ACM, New York (2001)Google Scholar
  16. 16.
    Waldvogel, M., Rinaldi, R.: Efficient topology-aware overlay network. In: Proc. of HotNets (2002)Google Scholar
  17. 17.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an internetwork. In: Proc. of IEEE INFOCOM (1996)Google Scholar
  18. 18.
    Zhang, H., Goel, A., Govindan, R.: Incrementally improving lookup latency in distributed hash table systems. In: Proc. of ACM SIGMETRICS (2003)Google Scholar
  19. 19.
    Zhao, B.Y., Duan, Y., Huang, L., Joseph, A., Kubiatowicz, J.: Brocade: Landmark routing on overlay networks. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 34. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Zhao, B.Y., Huang, L., Rhea, S.C., Stribling, J., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: A global-scale overlay for rapid service deployment. IEEE J-SAC 22(1), 41–53 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Byung-Gon Chun
    • 1
  • Ben Y. Zhao
    • 2
  • John D. Kubiatowicz
    • 1
  1. 1.Computer Science DivisionU.C. Berkeley 
  2. 2.Department of Computer ScienceU.C. Santa Barbara 

Personalised recommendations