Advertisement

Hybrid Overlay Structure Based on Random Walks

  • Ruixiong Tian
  • Yongqiang Xiong
  • Qian Zhang
  • Bo Li
  • Ben Y. Zhao
  • Xing Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3640)

Abstract

Application-level multicast on structured overlays often suffer several drawbacks: 1) The regularity of the architecture makes it difficult to adapt to topology changes; 2) the uniformity of the protocol generally does not consider node heterogeneity. It would be ideal to combine the scalability of these overlays with the flexibility of an unstructured topology. In this paper, we propose a locality-aware hybrid overlay that combines the scalability and interface of a structured network with the connection flexibility of an unstructured network. Nodes self-organize into structured clusters based on network locality, while connections between clusters are created adaptively through random walks. Simulations show that this structure is efficient in terms of both delay and bandwidth. The network also supports the scalable fast rendezvous interface provided by structured overlays, resulting in fast membership operations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The pinger projectGoogle Scholar
  2. 2.
    Asano, T., et al.: Space-filling curves and their use in the design of geometric data structures. Theoretical Computer Science 181(1), 3–15 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Castro, M., Druschel, P., Hu, Y., Rowstron, A.: Exploiting network proximity in distributed hash tables. In: International Workshop on Peer-to-Peer Systems (2002)Google Scholar
  4. 4.
    Chu, Y., Rao, S., Seshan, S., Zhang, H.: Enabling conferencing applications on the internet using an overlay multicast architecture. In: ACM SIGCOMM (August 2001)Google Scholar
  5. 5.
    Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network coordinate system. In: ACM SIGCOMM (2004)Google Scholar
  6. 6.
    Fill, A.: Reversible markov chains and random walks on graphsGoogle Scholar
  7. 7.
    Ganesan, P., Gummadi, K., Garcia-Molina, H.: Canon in g major: Designing dhts with hierarchical structure. In: ICDCS (March 2004)Google Scholar
  8. 8.
    Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In: IEEE INFOCOM (March 2004)Google Scholar
  9. 9.
    Kermarrec, A.-M., Massoulie, L., Ganesh, A.J.: Probabilistic reliable dissemination in large-scale systems. IEEE Transactions on Parallel and Distributed systems 14(3), 248–258 (2003)Google Scholar
  10. 10.
    Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-peer support for massively multiplayer games. In: IEEE INFOCOM (March 2004)Google Scholar
  11. 11.
    Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of structured peer-to-peer systems: Routing distances and fault resilience. In: ACM SIGCOMM (August 2003)Google Scholar
  12. 12.
    Ng, T.S.E., Zhang, H.: Towards global network positioning. In: ACM SIGCOMM IMW (2001)Google Scholar
  13. 13.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Rowstron, A., Kermarrec, A.-M., Castro, M., Druschel, P.: Scribe: The design of a large-scale event notification infrastructure. In: NGC (UCL, London) (November 2001)Google Scholar
  15. 15.
    Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. IEEE/ACM Trans. on Networking 12(2), 219–232 (2004)Google Scholar
  16. 16.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM (August 2001)Google Scholar
  17. 17.
    Xu, Z., Mathalingam, M., Karlsson, M.: Turning heterogeneity into an advantage in overlay routing. In: IEEE INFOCOM (June 2003)Google Scholar
  18. 18.
    Zhang, X., et al.: A construction of locality-aware overlay network: moverlay and its performance. IEEE JSAC (January 2004)Google Scholar
  19. 19.
    Zhao, B.Y., et al.: Brocade: Landmark routing on overlay networks. In: Druschel, P., Kaashoek, M.F., Rowstron, A., et al. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 34. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Zhao, B.Y., et al.: Tapestry: A resilient global-scale overlay for service deployment. IEEE JSAC 22(1), 41–53 (January 2004)Google Scholar
  21. 21.
    Zhuang, S.Q., et al.: Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination. In: NOSSDAV (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ruixiong Tian
    • 1
  • Yongqiang Xiong
    • 2
  • Qian Zhang
    • 2
  • Bo Li
    • 3
  • Ben Y. Zhao
    • 4
  • Xing Li
    • 1
  1. 1.Department of Electronic EngineeringTsinghua University 
  2. 2.Microsoft Research AsiaBeijingChina
  3. 3.Department of Computer ScienceHong Kong University of Science and Technology 
  4. 4.Department of Computer ScienceU.C. Santa Barbara 

Personalised recommendations