Model Reduction for RF MEMS Simulation

  • David S. Bindel
  • Zhaojun Bai
  • James W. Demmel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3732)

Abstract

Radio-frequency (RF) MEMS resonators, integrated into CMOS chips, are of great interest to engineers planning the next generation of communication systems. Fast simulations are necessary in order to gain insights into the behavior of these devices. In this paper, we discuss two structure-preserving model-reduction techniques and apply them to the frequency-domain analysis of two proposed MEMS resonator designs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbenz, P., Hochstenbach, M.E.: A Jacobi-Davidson method for solving complex symmetric eigenvalue problems. SIAM J. Sci. Comp. 25(5), 1655–1673 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bai, Z., Su, Y.: Dimension reduction of second-order dynamical systems via a second-order Arnoldi method. SIAM J. Sci. Comp (2004) (to appear)Google Scholar
  3. 3.
    Bai, Z., Su, Y.: SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. (2004) (to appear)Google Scholar
  4. 4.
    Basu, U., Chopra, A.: Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Computer Methods in Applied Mechanics and Engineering 192, 1337–1375 (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Bérenger, J.-P.: Aperfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 114(2), 185–200 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bhave, S., Gao, D., Maboudian, R., Howe, R.T.: Fully differential poly-SiC Lamé mode resonator and checkerboard filter. In: Proceedings of MEMS 2005, Miami, FL (January 2005)Google Scholar
  7. 7.
    Bindel, D.S., Quévy, E., Koyama, T., Govindjee, S., Demmel, J.W., Howe, R.T.: Anchor loss simulation in resonators. In: Proceedings of MEMS 2005, Miami, FL (January 2005)Google Scholar
  8. 8.
    Candler, R.N., Li, H., Lutz, M., Park, W.-T., Partridge, A., Yama, G., Kenny, T.W.: Investigation of energy lossmechanisms in micromechanical resonators. In: Proceedings of Transducers 2003, Boston, June 2003, pp. 332–335 (2003)Google Scholar
  9. 9.
    Demirci, M.U., Abdelmoneum, M.A., Nguyen, C.T.-C.: Mechanically corner-coupled square microresonator array for reduced series motional resistance. In: Proc. of the 12th Intern. Conf. on Solid State Sensors, Actuators, and Microsystems, Boston, June 2003, pp. 955–958 (2003)Google Scholar
  10. 10.
    Nguyen, C.T.-C.: Vibrating RF MEMS for low power wireless communications. In: Proceedings of the 2001 International MEMS Workshop (iMEMS 2001), Singapore, July 2001, pp. 21–34 (2001)Google Scholar
  11. 11.
    Odabasioglu, A., Celik, M., Pileggi, L.T.: PRIMA: passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 17, 645–654 (1998)CrossRefGoogle Scholar
  12. 12.
    Su, T.-J., Craig Jr., R.R.: Model reduction and control of flexible structures using Krylov vectors. J. of Guidance, Control and Dynamics 14, 260–267 (1991)CrossRefGoogle Scholar
  13. 13.
    Teixeira, F., Chew, W.: Complex space approach to perfectly matched layers: a review and some new developments. International Journal of Numerical Modelling 13(5), 441–455 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Turkel, E., Yefet, A.: Absorbing PML boundary layers for wave-like equations. Applied Numerical Mathematics 27(4), 533–557 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wang, J., Ren, Z., Nguyen, C.T.-C.: Self-aligned 1.14 GHz vibrating radial-mode disk resonators. In: Proceedings of Transducers 2003, pp. 947–950 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David S. Bindel
    • 1
  • Zhaojun Bai
    • 2
  • James W. Demmel
    • 3
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Department of Computer ScienceUniversity of California at DavisDavisUSA
  3. 3.Department of Electrical Engineering and Computer Science and, Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations