Skip to main content

Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

Abstract

We describe the parallelization of an efficient algorithm for balanced truncation that allows to reduce models with state-space dimension up to \(\mathcal{O}(10^5)\). The major computational task in this approach is the solution of two large-scale sparse Lyapunov equations, performed via a coupled LR-ADI iteration with (super-)linear convergence. Experimental results on a cluster of Intel Xeon processors illustrate the efficacy of our parallel model reduction algorithm.

José M. Badía, Rafael Mayo, and E.S. Quintana-Ortí were supported by the CICYT project No. TIC2002-004400-C03-01 and FEDER, and project No. P1B-2004-6 of the Fundación Caixa-Castelló n/Bancaixa and UJI. P. Benner was supported by the DFG Research Center “Mathematics for key technologies” (FZT 86) in Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: MUMPS: a general purpose distributed memory sparse solver. In: Sørevik, T., Manne, F., Moe, R., Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 122–131. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia (2005)

    Book  MATH  Google Scholar 

  3. Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: Balanced truncation model reduction of large-scale dense systems on parallel computers. Math. Comput.Model. Dyn. Syst. 6(4), 383–405 (2000)

    MATH  Google Scholar 

  4. Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: State-space truncation methods for parallel model reduction of large-scale systems. Parallel Comput. 29, 1701–1722 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems. SLICOT Working Note 2002–2 (February 2002), Available from http://www.win.tue.nl/niconet/NIC2/reports.html

  6. Cheng, C.-K., Lillis, J., Lin, S., Chang, N.H.: Interconnect Analysis and Synthesis. John Wiley & Sons, Inc., New York (2000)

    Google Scholar 

  7. Cheng, J., Ianculescu, G., Kenney, C.S., Laub, A.J., Papadopoulos, P.M.: Control-structure interaction for space station solar dynamic power module. IEEE Control Systems, 4–13 (1992)

    Google Scholar 

  8. Chu, P.Y., Wie, B., Gretz, B., Plescia, C.: Approach to large space structure control system design using traditional tools. AIAA J. Guidance, Control, and Dynamics 13, 874–880 (1990)

    Article  Google Scholar 

  9. Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU User’s Guide

    Google Scholar 

  10. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct methods for sparse matrices. Oxford Science Publications, Oxford (1993)

    Google Scholar 

  11. Fortuna, L., Nummari, G., Gallo, A.: Model Order Reduction Techniques with Applications in Electrical Engineering. Springer, Heidelberg (1992)

    Google Scholar 

  12. Freund, R.: Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation. In: Datta, B.N. (ed.) Applied and Computational Control, Signals, and Circuits. ch. 9, vol. 1, pp. 435–498. Birkhäuser, Boston (1999)

    Google Scholar 

  13. Freund, R.: Model reduction methods based on Krylov subspaces. Acta Numerica 12, 267–319 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freund, R.W., Feldmann, P.: Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm. In: Technical Digest of the 1996 IEEE/ACM International Conference on Computer-Aided Design, pp. 280–287. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  15. Goto, K., van de Geijn, R.: On reducing TLB misses in matrix multiplication. FLAME Working Note 9, Department of Computer Sciences, The University of Texas at Austin (2002), http://www.cs.utexas.edu/users/flame

  16. Gugercin, S., Antoulas, A.C.: A survey of balancing methods for model reduction. In: Proc. European Control Conf. ECC 2003 (CD-ROM), Cambridge (2003)

    Google Scholar 

  17. Li, J.-R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  Google Scholar 

  18. Moore, B.C.: Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Control AC-26, 17–32 (1981)

    Article  Google Scholar 

  19. Obinata, G., Anderson, B.D.O.: Model Reduction for Control System Design. Communications and Control Engineering Series. Springer, London (2001)

    MATH  Google Scholar 

  20. Paul, C.R.: Analysis of Multiconductor Transmission Lines. Wiley–Interscience, Singapur (1994)

    Google Scholar 

  21. Penzl, T.: Algorithms for model reduction of large dynamical systems. Technical Report SFB393/99-40, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, Germany (1999), Available from http://www.tu-chemnitz.de/sfb393/sfb99pr.html

  22. Penzl, T.: A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Automat. AC-34, 729–733 (1989)

    Article  MathSciNet  Google Scholar 

  24. Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable non-minimal state-space system. Internat. J. Control 46(4), 1319–1330 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Varga, A.: Efficient minimal realization procedure based on balancing. In: Prepr. of the IMACS Symp. on Modelling and Control of Technological Systems, vol. 2, pp. 42–47 (1991)

    Google Scholar 

  26. Varga, A.: Model reduction software in the SLICOT library. In: Datta, B.N. (ed.) Applied and Computational Control, Signals, and Circuits. The Kluwer International Series in Engineering and Computer Science, vol. 629, pp. 239–282. Kluwer Academic Publishers, Boston (2001)

    Google Scholar 

  27. Wachspress, E.L.: ADI iteration parameters for the Sylvester equation, Available from the author (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Badía, J.M., Benner, P., Mayo, R., Quintana-Ortí, E.S. (2006). Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_32

Download citation

  • DOI: https://doi.org/10.1007/11558958_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics