Skip to main content

Optimal Embedding for Watermarking in Discrete Data Spaces

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3727)

Abstract

In this paper, we address the problem of robust information embedding in digital data. Such a process is carried out by introducing modifications to the original data that one would like to keep minimal. It assumes that the data, which includes the embedded information, is corrupted before the extraction is carried out. We propose a principled way to tailor an efficient embedding process for given data and noise statistics.

Keywords

  • Noise Model
  • Noise Property
  • Actual Noise
  • Quantisation Point
  • Embedding Process

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11558859_7
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-31481-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bounkong, S.: Digital Image Watermarking. PhD thesis, Aston University (2004)

    Google Scholar 

  2. Bounkong, S., Toch, B., Saad, D., Lowe, D.: Structured codebooks for SCS watermarking. In: Proceedings of the Signal Processing, Pattern Recognition, and Applications Conference, pp. 77–81. ACTA Press (2003)

    Google Scholar 

  3. Chen, B., Wornell, G.: Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory 47, 1423–1443 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Eggers, J., Bauml, R., Tzschoppe, R., Girod, B.: Scalar costa scheme for information embedding. IEEE Transactions on Signal Processing 51, 1003–1019 (2003)

    CrossRef  MathSciNet  Google Scholar 

  5. Ramkumar, M.: Data hiding in multimedia - theory and applications. PhD thesis, New Jersey Institute of Technology (2000)

    Google Scholar 

  6. Heegard, C., Gamal, A.A.E.: On the capacity of computer memory with defects. IEEE Transactions on Information Theory 29, 731–739 (1983)

    CrossRef  MATH  Google Scholar 

  7. Cover, T., Thomas, J.: Elements of information theory. John Wiley and Sons, New York (1991)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bounkong, S., Toch, B., Saad, D. (2005). Optimal Embedding for Watermarking in Discrete Data Spaces. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds) Information Hiding. IH 2005. Lecture Notes in Computer Science, vol 3727. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558859_7

Download citation

  • DOI: https://doi.org/10.1007/11558859_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29039-1

  • Online ISBN: 978-3-540-31481-3

  • eBook Packages: Computer ScienceComputer Science (R0)