A Survey of Recent Results on Spatial Reasoning via Rough Inclusions

  • Lech Polkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3490)

Abstract

The term rough inclusion was introduced as a generic term by Polkowski and Skowron in the seminal paper that laid foundations for Rough Mereology – a paradigm for Approximate Reasoning that combines ideas of Mereology – a set theory based on the notion of a part – with ideas of Rough Set Theory and Fuzzy Set Theory; in particular, its basic predicate of rough inclusion is a rendering of the notion of being a part to a degree. Rough Mereology is an approach towards constructing reasoning schemes that take into account uncertainty of either knowledge or concepts used in reasoning. This abstract reasoning methodology is therefore a constituent of the vast field of Cognitive Technologies (styled also Artificial Intelligence).

It is well–known that mereological theories of objects have been applied in Spatial Reasoning – reasoning about uncertainty in spatial contexts. The majority of theories based on mereology and applied in reasoning about spatial objects stem from the idea of A. N. Whitehead, viz., Mereology Theory based on the predicate of being connected.

In this article, we give a survey of the current state of the art in spatial reasoning based on constructs of Rough Mereology. We include here theoretical results – some of them already shown in earlier works – that witness applicability of constructs based on rough inclusions in spatial reasoning as well as we mention recent works on practical applications to real–world robot navigation.

Keywords

Rough mereology spatial reasoning mereo–topology mereo–geometry mobile robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., et al.: Fast discovery of association rules. In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. The AAAI Press/The MIT Press (1996)Google Scholar
  2. 2.
    Aurnague, M., Vieu, L.: A theory of space-time for natural language semantics. In: Korta, K., Larrazábal, J.M. (eds.) Semantics and Pragmatics of Natural Language: Logical and Computational Aspects, ILCLI Series I, pp. 69–126. Univ. Pais Vasco, San Sebastian (1995)Google Scholar
  3. 3.
    vanBentham, J.: The Logic of Time Reidel, Dordrecht (1983)Google Scholar
  4. 4.
    Clarke, B.L.: A calculus of individuals based on connection. Notre Dame Journal of Formal Logic 22(2), 204–218 (1981)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohn, A.G.: Calculi for qualitative spatial reasoning. In: Calmet, J., Campbell, J.A., Pfalzgraf, J. (eds.) AISMC 1996. LNCS, vol. 1138, pp. 124–143. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Egenhofer, M.J., Golledge, R.G. (eds.): Spatial and Temporal Reasoning in Geographic Information Systems. Oxford U. Press, Oxford (1997)Google Scholar
  7. 7.
    Freksa, C., Mark, D.M. (eds.): COSIT 1999. LNCS, vol. 1661. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Freksa, C., Habel, C.: Repraesentation und Verarbeitung raeumlichen Wissens, Informatik- Fachberichte. Springer, Berlin (1990)Google Scholar
  9. 9.
    Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. MIT Press, Cambridge (1994)Google Scholar
  10. 10.
    De Laguna, T.: Point, line, surface as sets of solids. J. Philosophy 19, 449–461 (1922)CrossRefGoogle Scholar
  11. 11.
    Leśniewski, St.: On the foundations of mathematics. Topoi 2, 7–52 (1982)Google Scholar
  12. 12.
    Masolo, C., Vieu, L.: Atomicity vs. Infinite divisibility of space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 235–250. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Pal, S.K., Polkowski, L., Skowron, A.: Rough–Neural Computing. Techniques for Computing with Words. Springer, Berlin (2004)MATHGoogle Scholar
  15. 15.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1992)Google Scholar
  16. 16.
    Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Schafer Theory of Evidence, pp. 251–271. John Wiley and Sons, New York (1994)Google Scholar
  17. 17.
    Polkowski, L.: Rough Sets. Mathematical Foundations. Physica–Verlag, Heidelberg (2002)MATHGoogle Scholar
  18. 18.
    Polkowski, L.: On connection synthesis via rough mereology. Fundamenta Informaticae 46(1/2), 83–96 (2001)MATHMathSciNetGoogle Scholar
  19. 19.
    Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Polkowski, L., Skowron, A.: Rough mereology in information systems with applications to qualitative spatial reasoning. Fundamenta Informaticae 43(1–4), 291–320 (2000)MATHMathSciNetGoogle Scholar
  21. 21.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery. Methodology and Applications. In: Kacprzyk, J. (ed.) Studies in Fuzziness and Soft Computing, vol. 18, Physica Verlag/Springer Verlag, Heidelberg (1998)Google Scholar
  22. 22.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery. Applications,Case Studies and Software Systems. In: Kacprzyk, J. (ed.) Studies in Fuzziness and Soft Computing, vol. 19, Physica Verlag/Springer Verlag, Heidelberg (1998)Google Scholar
  23. 23.
    Reichenbach, H.: The Philosophy of Space and Time (repr.). Dover, New York (1957)Google Scholar
  24. 24.
  25. 25.
    Szmigielski, A.: Using a System of Sonars for Description of Working Environment of a Mobile Robot by Means of Mereology, PhD Thesis, Institute of Automation and Computer Science, Warsaw University of Technology, L. Polkowski, supervisor (May 2004)Google Scholar
  26. 26.
    Szmigielski, A., Polkowski, L.: Computing from words via rough mereology in mobile robot navigation. In: Proceedings IEEE/JRS International Conference on Intelligent Robots and Systems IROS 2003, Las Vegas, NV, US, October 2003, pp. 3498–3503 (2003)Google Scholar
  27. 27.
    Tarski, A.: Les fondements de la géométrie des corps. In: Ksie¸ga Pamia¸tkowa I Polskiego Zjazdu Matematycznego (Memorial Book of the 1st Polish Mathematical Congress), a supplement to Annales de la Sociéte Polonaise de Mathématique, Cracow, pp. 29–33 (1929)Google Scholar
  28. 28.
    Tarski, A.: What is elementary geometry? In: Henkin, L., Suppes, P., Tarski, A. (eds.) The Axiomatic Method with Special Reference to Geometry and Physics, Studies in Logic and Foundations of Mathematics, North-Holland, Amsterdam, pp. 16–29 (1959)Google Scholar
  29. 29.
  30. 30.
  31. 31.
    Whitehead, A.N.: Process and Reality. An Essay in Cosmology. Macmillan, New York (1929) (corr. ed.: Griffin, D.R., Sherbourne, D.W. (eds.) (1978))Google Scholar
  32. 32.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4, 103–111 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lech Polkowski
    • 1
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations