Optimal Broadcast for Fully Connected Networks

  • Jesper Larsson Träff
  • Andreas Ripke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3726)

Abstract

We develop and implement a new optimal broadcast algorithm for fully connected, bidirectional, one-ported networks under a linear communication cost model. For any number of processors p the number of communication rounds required to broadcast N blocks of data is ⌈logp⌉− 1 + N. For data of size m, assuming that sending and receiving m data units takes time α + βm, the best running time that can be achieved is \((\sqrt{(\lceil{\rm log} p\rceil - 1)\alpha} + \sqrt{{\beta}m})^{2}\), meeting the lower bound under the assumption that the m units are sent as N blocks. This is better than previously known (and implemented) results, which achieve this only when p is a power of two (or other special cases), in particular, the algorithm is (theoretically) a factor two better than the commonly used, pipelined binary tree algorithm. The algorithm has a regular communication pattern based on simultaneous binomial-like trees, and when the number of blocks to be broadcast is one, degenerates into a binomial tree broadcast. Thus the same algorithm can be used for all message sizes m. The algorithm has been incorporated into a state-of-the-art MPI (Message Passing Interface) library. We demonstrate significant practical improvements of up to a factor 1.5 over several other, commonly used broadcast algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.J.: LogGP: Incorporating long messages into the LogP model for parallel computation. Journal of Parallel and Distributed Computing 44(1), 71–79 (1997)CrossRefGoogle Scholar
  2. 2.
    Cappello, F., Fraigniaud, P., Mans, B., Rosenberg, A.L.: HiHCoHP: Toward a realistic communication model for Hierarchical HyperClusters of Heterogeneous Processors. In: 15th International Parallel and Distributed Processing Symposium (IPDPS 2001), pp. 42–47 (2001)Google Scholar
  3. 3.
    Chan, E.W., Heimlich, M.F., Purkayastha, A., van de Geijn, R.A.: On optimizing collective communication. In: Cluster (2004)Google Scholar
  4. 4.
    Culler, D.E., Karp, R.M., Patterson, D., Sahay, A., Santos, E.E., Schauser, K.E., Subramonian, R., von Eicken, T.: LogP: A practical model of parallel computation. Communications of the ACM 39(11), 78–85 (1996)CrossRefGoogle Scholar
  5. 5.
    Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual networks. Discrete Applied Mathematics 53(1–3), 79–133 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gołebiewski, M., Ritzdorf, H., Träff, J.L., Zimmermann, F.: The MPI/SX implementation of MPI for NEC’s SX-6 and other NEC platforms. NEC Research & Development 44(1), 69–74 (2003)Google Scholar
  7. 7.
    Hedetniemi, S.M., Hedetniemi, T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18, 319–349 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Johnsson, S.L., Ho, C.-T.: Optimum broadcasting and personalized communication in hypercubes. IEEE Transactions on Computers 38(9), 1249–1268 (1989)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Juhász, S., Kovács, F.: Asynchronous distributed broadcasting in cluster environment. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 164–172. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Sanders, P., Sibeyn, J.F.: A bandwidth latency tradeoff for broadcast and reduction. Information Processing Letters 86(1), 33–38 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Santos, E.E.: Optimal and near-optimal algorithms for k-item broadcast. Journal of Parallel and Distributed Computing 57(2), 121–139 (1999)MATHCrossRefGoogle Scholar
  12. 12.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI – The Complete Reference. In: The MPI Core, 2nd edn. MIT Press, Cambridge (1998)Google Scholar
  13. 13.
    Thakur, R., Gropp, W.D., Rabenseifner, R.: Improving the performance of collective operations in MPICH. International Journal on High Performance Computing Applications 19, 49–66 (2004)CrossRefGoogle Scholar
  14. 14.
    Tien, J.-Y., Ho, C.-T., Yang, W.-P.: Broadcasting on incomplete hypercubes. IEEE Transactions on Computers 42(11), 1393–1398 (1993)CrossRefGoogle Scholar
  15. 15.
    Träff, J.L.: A simple work-optimal broadcast algorithm for message-passing parallel systems. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 173–180. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Träff, J.L., Ripke, A.: An optimal broadcast algorithm adapted to SMP clusters. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 48–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jesper Larsson Träff
    • 1
  • Andreas Ripke
    • 1
  1. 1.C&C Research LaboratoriesNEC Europe Ltd.Sankt AugustinGermany

Personalised recommendations