Advertisement

On Algorithm for the Delay- and Delay Variation-Bounded Multicast Trees Based on Estimation

  • Youngjin Ahn
  • Moonseong Kim
  • Young-Cheol Bang
  • Hyunseung Choo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3726)

Abstract

With the multicast technology, demands for the real-time group applications through multicasting is getting more important. An essential factor of these real-time strategy is to optimize the Delay- and delay Variation-Bounded Multicast Tree (DVBMT) problem. In this paper, we propose a new algorithm for the DVBMT solution. The proposed algorithm outperforms other algorithms up to 9%~25% in terms of the delay variation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, M., Bang, Y.-C., Choo, H.: Efficient algorithm for reducing delay variation on bounded multicast trees. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 440–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Rodionov, A.S., Choo, H.: On generating random network structures: Connected graphs. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 483–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Rouskas, G.N., Baldine, I.: Multicast routing with end-to-end delay and delay variation constraints. IEEE J-SAC 15(3), 346–356 (1997)Google Scholar
  4. 4.
    Sheu, P.-R., Chen, S.-T.: A fast and efficient heuristic algorithm for the delay- and delay variation bound multicast tree problem. In: Proc. ICOIN-15 Information Networking, January 2001, pp. 611–618 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Youngjin Ahn
    • 1
  • Moonseong Kim
    • 1
  • Young-Cheol Bang
    • 2
  • Hyunseung Choo
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Department of Computer EngineeringKorea Polytechnic UniversityGyeonggi-DoKorea

Personalised recommendations