Code Generation from UML Models with Semantic Variation Points

  • Franck Chauvel
  • Jean-Marc Jézéquel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3713)


UML semantic variation points provide intentional degrees of freedom for the interpretation of the metamodel semantics. The interest of semantic variation points is that UML now becomes a family of languages sharing lot of commonalities and some variabilities that one can customize for a given application domain. In this paper, we propose to reify the various semantic variation points of UML 2.0 statecharts into models of their own to avoid hardcoding the semantic choices in the tools. We do the same for various implementation choices. Then, along the line of the OMG’s Model Driven Architecture, these semantic and implementation models are processed along with a source UML model (that can be seen as a PIM) to provide a target UML model (a PSM) where all semantic and implementation choice are made explicit. This target model can in turn serve as a basis for a consistent use of code generation, simulation, model-checking or test generation tools.


Code Generation Model Transformation Semantic Model Selection Policy Structure Operational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Börger, E., Cavarra, A., Riccobene, E.: On formalizing UML state machines using ASM. Information & Software Technology 46(5), 287–292 (2004)CrossRefGoogle Scholar
  2. 2.
    Carter, K.: iUMLite tool suite and ASL language. from Kennedy Carter’s website,
  3. 3.
    Von der Beeck, M.: A comparison of statecharts variants. In: De Roever, L., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 128–148. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1995)Google Scholar
  5. 5.
    Le Guennec, A., Sunyé, G., Jézéquel, J.-M.: Precise modeling of design patterns. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 482–496. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8(3), 231–274 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Harel, D., Gery, E.: Executable object modeling with statecharts. In: ICSE 1996: Proceedings of the 18th international conference on Software engineering, pp. 246–257. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  8. 8.
    Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Transactions on Software Engineering and Methodology 5(4), 293–333 (1996)CrossRefGoogle Scholar
  9. 9.
    Ho, W.-M., Jézéquel, J.-M., Le Guennec, A., Pennaneac’h, F.: UMLAUT: an extendible UML transformation framework. In: Proc. Automated Software Engineering, ASE 1999, Florida (October 1999)Google Scholar
  10. 10.
    Jauhar, A., Tanaka, J.: Implementation of the Dynamic Behavior of Object Oriented System. In: Third World Conference on Integrated Design and Process Technology (IDPT 1998), Berlin, Germany, July 1998, vol. 4 (1998)Google Scholar
  11. 11.
    Jauhar, A., Tanaka, J.: Implementing the dynamic behavior represented as multiple state diagrams and activity diagrams. Journal of Computer Science & Information Management (JCSIM) 2(1), 24–36 (2001)Google Scholar
  12. 12.
    Fleurey, F., Muller, P.-A., Jézéquel, J.-M.: Weaving executability into object-oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005) (to be published)CrossRefGoogle Scholar
  13. 13.
    Pollet, D., Vojtisek, D., Jézéquel, J.-M.: OCL as a core UML transformation language. WITUML 2002 Position paper, Malaga, Spain (June 2002),
  14. 14.
    UML Revision Task Force RTF. UML draft version 2.0 specification (April 2003)Google Scholar
  15. 15.
    Soley, R., OMG Staff Group: Model Driven Architecture. White papers, Object Management Group (November 2000)Google Scholar
  16. 16.
    Tomura, T., Kanai, S.: Developing simulation models of open distributed control system by using object-oriented structural and behavioral patterns. In: ISORC, pp. 428–437 (2001)Google Scholar
  17. 17.
    von der Beeck, M.: A structured operational semantics for UML-statecharts. Software and System Modeling 1(2), 130–141 (2002)CrossRefGoogle Scholar
  18. 18.
    Ziadi, T.: Manipulation de lignes de produits en UML. PhD thesis, Universit de Rennes 1 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Franck Chauvel
    • 1
  • Jean-Marc Jézéquel
    • 2
  1. 1.VALORIA 
  2. 2.INRIA & Université de Rennes 1 

Personalised recommendations