Skip to main content

Minimum Recombination Histories by Branch and Bound

  • Conference paper
Algorithms in Bioinformatics (WABI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3692))

Included in the following conference series:

Abstract

Recombination plays an important role in creating genetic diversity within species, and inferring past recombination events is central to many problems in genetics. Given a set M of sampled sequences, finding an evolutionary history for M with the minimum number of recombination events is a computationally very challenging problem. In this paper, we present a novel branch and bound algorithm for tackling that problem. Our method is shown to be far more efficient than the only preexisting exact method, described in [1]. Our software implementing the algorithm discussed in this paper is publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Song, Y.S., Hein, J.: Parsimonious reconstruction of sequence evolution and haplotype blocks. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 287–302. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Hudson, R.R., Kaplan, N.L.: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985)

    Google Scholar 

  3. Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination events in a sample history. Genetics 163, 375–394 (2003)

    Google Scholar 

  4. Gusfield, D., Hickerson, D.: A new lower bound on the number of needed recombination nodes in both unrooted and rooted phylogenetic networks. Technical Report UCD-ECS-06, University of California, Davis (2004)

    Google Scholar 

  5. Song, Y.S., Hein, J.: On the minimum number of recombination events in the evolutionary history of DNA sequences. Journal of Mathematical Biology 48, 160–186 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bafna, V., Bansal, V.: Improved recombination lower bounds for haplotype data. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 569–584. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution. In: Proceedings of the 13th International Conference on Intelligent Systems for Molecular Biology, ISMB (2005), (in press)

    Google Scholar 

  8. Fearnhead, P., Harding, R.M., Schneider, J.A., Myers, S., Donnelly, P.: Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots. Genetics 167, 2067–2081 (2004)

    Article  Google Scholar 

  9. Griffiths, R.C., Marjoram, P.: An ancestral recombination graph. In: Progress in Population Genetics and Human Evolution. IMA Volumes in Mathematics and its Applications, vol. 87, pp. 257–270. Springer, Heidelberg (1997)

    Google Scholar 

  10. Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903 (1969)

    Google Scholar 

  11. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8, 69–78 (2001)

    Article  Google Scholar 

  13. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology 2, 173–213 (2004)

    Article  Google Scholar 

  14. Kreitman, M.: Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304, 412–417 (1983)

    Article  Google Scholar 

  15. Nickerson, D.A., Taylor, S.L., Weiss, K.M., Clark, A.G., Hutchinson, R.G., Stengard, J., Salomaa, V., Vartiainen, E., Boerwinkle, E., Sing, C.F.: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genetics 19, 216–217 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lyngsø, R.B., Song, Y.S., Hein, J. (2005). Minimum Recombination Histories by Branch and Bound. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_20

Download citation

  • DOI: https://doi.org/10.1007/11557067_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29008-7

  • Online ISBN: 978-3-540-31812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics