Advertisement

Constant Round Dynamic Group Key Agreement

  • Ratna Dutta
  • Rana Barua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3650)

Abstract

We present a fully symmetric constant round authenticated group key agreement protocol in dynamic scenario. Our proposed scheme achieves forward secrecy and is provably secure under DDH assumption in the security model of Bresson et al. providing, we feel, better security guarantee than previously published results. The protocol is efficient in terms of both communication and computation power.

Keywords

group key agreement DDH problem provable security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, C., Nieto, J.M.G.: Round-Optimal Contributory Conference Key Agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bresson, E., Catalano, D.: Constant Round Authenticated Group Key Agreement via Distributed Computing. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 115–129. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bresson, E., Chevassut, O., Essiari, A., Pointcheval, D.: Mutual Authentication and Group Key Agreement for low-power Mobile Devices. In: Proceedings of Computer Communication, vol. 27(17), pp. 1730–1737 (2004)Google Scholar
  5. 5.
    Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Burmester, M., Desmedt, Y.: A Secure and Scalable Group Key Exchange System. Information Processing Letters 94(3), 137–143 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Diffie, W., Hellman, M.: New Directions In Cryptography. In: Proceedings of IEEE Transactions on Information Theory, vol. IT-22(6), pp. 644–654 (1976)Google Scholar
  8. 8.
    Dutta, R., Barua, R., Sarkar, P.: Provably Secure Authenticated Tree Based Group Key Agreement. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 92–104. Springer, Heidelberg (2004), Also available at http://eprint.iacr.org/2004/090 CrossRefGoogle Scholar
  9. 9.
    Dutta, R., Barua, R.: Dynamic Group Key Agreement in Tree-Based Setting. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 101–112. Springer, Heidelberg (2005) (to appear), Also available at http://eprint.iacr.org/2005/131 CrossRefGoogle Scholar
  10. 10.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Kim, Y., Perrig, A., Tsudik, G.: Tree based Group Key Agreement, Available at http://eprint.iacr.org/2002/009
  12. 12.
    Kim, H.J., Lee, S.M., Lee, D.H.: Constant-Round Authenticated Group Key Exchange for Dynamic Groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 245–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman Key Distribution Extended to Group Communication. In: Proceedings of ACMCCS 1996, pp. 31–37 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ratna Dutta
    • 1
  • Rana Barua
    • 1
  1. 1.Stat-Math UnitIndian Statistical Institute 

Personalised recommendations