Advertisement

A Cryptographic Solution for General Access Control

  • Yibing Kong
  • Jennifer Seberry
  • Janusz R. Getta
  • Ping Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3650)

Abstract

As one of the most popular information safeguarding mechanisms, access control is widely deployed in information systems. However, access control approach suffers from a tough problem, i.e. system administrators must be unconditionally trusted. Cryptographic substitutes have been developed to solve the above problem. In particular, hierarchical encryption, as an alternate solution of access control in a hierarchy, has been intensively studied. In this paper, we propose a cryptographic solution for general access control based on Chinese Remainder Theorem. Our solution has two categories: data based solution and key based solution. In contrast to the most recent hierarchical encryption system: Ray, Ray and Narasimhamurthi’s system [1], our solution is more efficient, secure and flexible. Moreover, we introduce an efficient mechanism for authorization alterations. This paper ends with a set of experimental results that support our research.

Keywords

Chinese Remainder Theorem Hierarchical Encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ray, I., Ray, I., Narasimhamurthi, N.: A Cryptographic Solution to Implement Access Control in a Hierarchy and More. In: Proceedings of the Seventh ACM Symposium on Access Control Models and Technologies, pp. 65–73. ACM Press, New York (2002)CrossRefGoogle Scholar
  2. 2.
    Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST Standard for Role-based Access Control. ACM Transactions on Information and System Security 4(3), 224–274 (2001)CrossRefGoogle Scholar
  3. 3.
    Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible Support for Multiple Access Control Policies. ACM Transactions on Database Systems 26(2), 214–260 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Akl, S.G., Taylor, P.D.: Cryptographic Solution to a Multilevel Security Problem. In: Advances in Cryptology: Proceedings of Crypto 1982, pp. 237–249. Plenum Press, New York (1982)Google Scholar
  5. 5.
    Akl, S.G., Taylor, P.D.: Cryptographic Solution to a Problem of Access Control in a Hierarchy. ACM Transactions on Computer Systems 1(3), 239–248 (1983)CrossRefGoogle Scholar
  6. 6.
    MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An Optimal Algorithm for Assigning Cryptographic Keys to Access Control in a Hierarchy. IEEE Transactions on Computers 34(9), 797–802 (1985)CrossRefGoogle Scholar
  7. 7.
    Chick, G.C., Tavares, S.E.: Flexible Access Control with Master Keys. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 316–322. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Harn, L., Lin, H.Y.: A Cryptographic Key Generation Scheme for Multi-level Data Security. Computer & Security 9(6), 539–546 (1990)CrossRefGoogle Scholar
  9. 9.
    Sandhu, R.S.: Cryptographic Implementation of a Tree Hierarchy for Access Control. Information Processing Letters 27(2), 95–98 (1988)CrossRefGoogle Scholar
  10. 10.
    Ohta, K., Okamoto, T., Koyama, K.: Membership Authentication for Hierarchical Multigroup using the Extended Fiat-Shamir Scheme. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 316–322. Springer, Heidelberg (1991)Google Scholar
  11. 11.
    Zheng, Y., Hardjono, T., Seberry, J.: New Solutions to the Problem of Access Control in a Hierarchy. Technical Report Preprint 93-2, Department of Computer Science, University of Wollongong (1993)Google Scholar
  12. 12.
    Yan, S.Y.: Number Theory for Computing. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  14. 14.
    Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Stallings, W.: Cryptography and Network Security: Principles and Practices. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  16. 16.
    Chiou, G., Chen, W.: Secure Broadcasting Using the Secure Lock. IEEE Transactions on Software Engineering 15(8), 929–934 (1989)CrossRefGoogle Scholar
  17. 17.
    Zou, X., Ramamurthy, B., Magliveras, S.: Chinese Remainder Theorem Based Hierarchical Access Control for Secure Group Commmunication. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 381–385. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yibing Kong
    • 1
  • Jennifer Seberry
    • 1
  • Janusz R. Getta
    • 1
  • Ping Yu
    • 1
  1. 1.School of Information Technology and Computer ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations