Compatible Ideal Contrast Visual Cryptography Schemes with Reversing

  • Chi-Ming Hu
  • Wen-Guey Tzeng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3650)


Recently, Viet and Kurosawa proposed a VCS with reversing, which is a Visual Cryptography Scheme(VCS) where every participant is allowed to change black pixels on the transparency to white pixels and vice-versa. The contrast of their scheme is almost ideal, depending on the number of the reconstruction runs performed. Before long, S. Cimato et al. proposed two VCSs with reversing where the contrast of the reconstructed secret image is ideal. However, both Cimato et al.’s schemes cannot be decrypted solely with the human eye.

In this paper we propose a new ideal VCS with reversing which is compatible and requires less stacking and reversing operations compared to all previous schemes. Each participant is required to store only two transparencies to reconstruct the ideal contrast secret image.


Visual Cryptography Secret Sharing Access Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual Cryptography for General Access Structures. Information and Computation 129(2), 86–106 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blundo, C., De Santis, A.: Visual Cryptography Schemes with Perfect Reconstructions of Black Pixels. Journal for Computers Graphics 22(4), 449–455 (1998)CrossRefGoogle Scholar
  3. 3.
    Blundo, C., De Santis, A., Stinson, D.R.: On the Contrast in Visual Cryptography Schemes. Journal of Cryptology 12(4), 261–289 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast Optimal Threshold Visual Cryptography Schemes. SIAM Journal on Discrete Mathematics 16(2), 224–261 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cimato, S., De Santis, A., Ferrara, A.L., Masucci, B.: Ideal Contrast Visual Cryptography Schemes with Reversing. Information Process Letters 93(4), 199–206 (2005)zbMATHCrossRefGoogle Scholar
  6. 6.
    De Bonis, A., De Santis, A.: Randomness in Secret Sharing and Visual Cryptography Schemes. Theoretical Computer Science 314(3), 351–374 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Droste, S.: New Results on Visual Cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Eisen, P.A., Stinson, D.R.: Threshold Visual Cryptography with Specified Whiteness Levels of Reconstructed Pixels. Designs, Code, and Cryptography 25(1), 15–61 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n Secret Sharing Schemes in Visual Cryptography. Theoretical Computer Science 240(2), 471–485 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Krause, M., Simon, H.: Determining the Optimal Contrast for Secret Sharing Schemes in Visual Cryptography. Combinatorics, Probability and Computing 12(3), 285–299 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ito, R., Kuwakado, H., Tanaka, H.: Image Size Invariant Visual Cryptography. IEICE Trans. Fundamentals E82-A(10), 481–494 (1999)Google Scholar
  12. 12.
    Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Stinson, D.R.: Visual Cryptography and Threshold Schemes. Dr. Dobb’s Journal (April 1998)Google Scholar
  14. 14.
    Tzeng, W.G., Hu, C.M.: A New Approach for Visual Cryptography. Designs, Code and Cryptography 27(1), 207–227 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Verheul, E.R., Van Tilborg, H.C.A.: Constructions and Properties of k out of n Visual Secret Sharing Schemes. Designs, Codes and Cryptography 11(2), 179–196 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Viet, D.Q., Kurosawa, K.: Almost Ideal Contrast Visual Cryptography with Reversing. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 353–365. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Chi-Ming Hu
    • 1
  • Wen-Guey Tzeng
    • 1
  1. 1.Department of Computer and Information ScienceNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations