A Non-redundant and Efficient Architecture for Karatsuba-Ofman Algorithm

  • Nam Su Chang
  • Chang Han Kim
  • Young-Ho Park
  • Jongin Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3650)


The divide-and-conquer method is efficiently used in parallel multiplier over finite field GF(2 n ). Leone proposed optimal stop condition for iteration of Karatsuba-Ofman algorithm (KOA). Multi-segment Karatsuba method (MSK) is proposed by Ernst et al. In this paper, we propose a Non-Redundant Karatsuba-Ofman algorithm (NRKOA) with removing redundancy operations, and design a parallel hardware architecture based on the proposed algorithm. Comparing with existing related Karatsuba architectures with the same time complexity, the proposed architecture reduces the area complexity. The proposed NRKOA multiplier has more efficient the space complexity than the previous KOA multipliers, where n is a prime. Furthermore, the space complexity of the proposed multiplier is reduced by 43% in the best case.


Polynomial Multiplication Karatsuba-Ofman Algorithm Non-Redundant Karatsuba-Ofman Algorithm Hardware Architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ANSI X9.62, Public key cryptography for the financial services industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) (available from the ANSI X9 catalog) (1999)Google Scholar
  2. 2.
    Cohen, H.: A Course in Computational Algebric Number Theory. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Drolet, G.: A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic circuit. IEEE Trans. on Computers 47, 353–356 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ernst, M., Jung, M., Madlener, F., Huss, S., Blümel, R.: A Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over GF(2n). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 381–399. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    IEEE 1363, Standard Specifications For Public Key Cryptography (2000),
  6. 6.
    Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992)zbMATHCrossRefGoogle Scholar
  7. 7.
    Koc, C.K., Sunar, B.: Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields. In: Proceeding of 1998 IEEE International Symposium on Information Theory, August 16-21, pp. 294–294. MIT, Cambridge (1998)Google Scholar
  8. 8.
    Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48, 203–209 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Leone, M.: A New Low Complexity Parallel Multiplier for a Class of Finite Fields. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 160–170. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Miller, V.: Use of Elliptic Curve Cryptosystems. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  11. 11.
    Paar, C.: Efficient VLSI Architecture for Bit-Parallel Computation in Galois Fields, PhD thesis (Engl. transl.), Institute for Experimental Mathematics, University of Essen, Essen, Germany (June 1994)Google Scholar
  12. 12.
    Paar, C.: Low complexity parallel Multipliers for Galois fields GF((2n)4) based on special types of primitive polynomials. In: 1994 IEEE International Symposium on Information Theory, Trondheim, Norway (June 27-July 1, 1994)Google Scholar
  13. 13.
    Paar, C.: A new architecture for a parallel finite fields multiplier with Low Complexity Based on Composite Fields. IEEE Trans. on Computers 45(7), 846–861 (1996)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Paar, C., Fleischmann, P., Roelse, P.: Efficient Multiplier Architectures for Galois Fields GF(24 n). IEEE Transactions on Computers 47(2), 162–170 (1998)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rodriguez-Henriquez, F., Koc, C.K.: On fully parallel Karatsuba multipliers for GF(2 m). In: Proceedings of the International Conference on Computer Science and Technology - CST 2003, May 2003, pp. 405–410. Acta Press, Cancun (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nam Su Chang
    • 1
  • Chang Han Kim
    • 2
  • Young-Ho Park
    • 3
  • Jongin Lim
    • 1
  1. 1.Center for Information and Security Technologies(CIST)Korea UniversitySeoulKorea
  2. 2.Dept. of Information and SecuritySemyung UniversityJecheonKorea
  3. 3.Dept. of Information SecuritySejong Cyber UnivSeoulKorea

Personalised recommendations