Hybrid Signcryption Schemes with Outsider Security

(Extended Abstract)
  • Alexander W. Dent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3650)


This paper expands the notion of a KEM–DEM hybrid encryption scheme to the signcryption setting by introducing the notion of a signcryption KEM, a signcryption DEM and a hybrid signcryption scheme. We present the security criteria that a signcryption KEM and DEM must satisfy in order that the overall signcryption scheme is secure against outsider attacks. We also present ECISS–KEM — a simple, efficient and provably secure example of a signcryption KEM. Lastly, we briefly discuss the problems associated with using KEMs in key establishment protocols.


Security Parameter Security Criterion Signcryption Scheme Decryption Oracle Hybrid Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An encryption scheme based on the Diffie-Hellman problem. Submission to P1363a: Standard Specifications for Public-Key Cryptography, Additional Techniques (2000)Google Scholar
  2. 2.
    An, J.H.: Authenticated encryption in the public-key setting: Security notions and analyses (2001), Available from
  3. 3.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE, Los Alamitos (1997)Google Scholar
  5. 5.
    Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 391–408. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dent, A.W.: Hybrid signcryption schemes with insider security (2004), Available from
  10. 10.
    Dodis, Y., Freedman, M.J., Jarecki, S., Walfish, S.: Optimal signcryption from any trapdoor permutation (2004), Available from
  11. 11.
    International Organization for Standardization. ISO/IEC 11770–3, Information technology — Security techniques — Key Management — Part 3: Mechanisms using asymmetric techniques (1999)Google Scholar
  12. 12.
    International Organization for Standardization. ISO/IEC CD 18033–2, Information technology — Security techniques — Encryption Algorithms — Part 2: Asymmetric Ciphers (2003)Google Scholar
  13. 13.
    Koblitz, N., Menezes, A.J.: Another look at provable security (2004), Available from
  14. 14.
    Malone-Lee, J.: Signcryption with non-interactive non-repudiation. Technical Report CSTR-02-004, Department of Computer Science, University of Bristol (May 2004)Google Scholar
  15. 15.
    Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of operation for efficient authenticated encryption. In: Proceedings of the Eighth ACM Conference on Computer and Communications Security (CCS-8), pp. 196–205. ACM Press, New York (2001)CrossRefGoogle Scholar
  16. 16.
    Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) < < cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexander W. Dent
    • 1
  1. 1.Information Security GroupRoyal Holloway, University of LondonEgham, SurreyU.K

Personalised recommendations